Loan Pricing under Basel II in an Imperfectly Competitive Banking Market

David Ruthenberg¹
Yoram Landskroner²

May 2007
working paper 07.05

¹ The Banking Supervision Department, Bank of Israel, and the School of Business Administration, Hebrew University of Jerusalem.
² School of Business Administration, Hebrew University of Jerusalem.

Thanks are due to Merav Koriat, Tanya Luskin, Tzachi Feder and David Marzuk for their research assistance.

David Ruthenberg wishes to thank the Sanger chair of Banking and Risk management for its financial support. Yoram Landskroner wishes to thank the Krueger foundation of the Hebrew University for its financial support.

The opinions expressed in this paper are the authors’ alone, and do not necessarily reflect those of the Bank of Israel.
Abstract

The new Basel Capital Accord (Basel II), published in its final form in June 2006, established new and revised capital requirements for banks. In this paper we analyze and estimate the possible effects of the new rules on the pricing of bank loans. We do that for the two approaches (Internal and Standardized) available to banks while making a distinction between retail (mainly households) and corporate customers. Our loan equation is based on a model of a banking firm facing uncertainty operating in an imperfectly competitive loan market. We use Israeli economic data and data of a leading Israeli bank, including probability of default of its retail and corporate customers. The main results are that high quality corporates and retail customers will enjoy a reduction in loan interest rates in (large) banks adopting the IRB approach. On the other hand high risk customers will benefit by shifting to (small) banks that adopt the Standardized approach.

JEL Classification: G21, G18

Key words: Basel II, minimum capital requirements, Internal Rating Based (IRB) approach, Standardized approach, probabilities of default (PD), Loss Given Default (LGD), Value-at-Risk (VaR), Unexpected Loss (UL), Exposure at Default (EAD), retail and corporate customers.
1. Introduction

In June 2006 the Basel Committee on banking supervision published its newly revised capital requirements known as the new Basel Capital Accord (Basel II). The purpose of the new Capital Accord is to more effectively match regulatory capital to the underlying risks faced by banks. This is achieved by improving the risk sensitivity of the capital ratios, especially with respect to credit risk, and by encouraging improved risk management on the part of the banks. Basically, the impetus for the new Basel Capital Accord is the shortcoming inherent in the current Basel Capital Accord (Basel I). Under Basel I, capital requirements are only weakly related to credit risk faced by the bank and no reference is made to operational risk. The lack of sensitivity to banking risks distorts optimal economic decisions by the bank and adversely affects the effectiveness of banking supervision and regulation.

The new Basel Capital Accord consists of three pillars, See Basel (2006): pillar 1 presents the calculation of the total minimum capital requirements for credit, market and operational risk; pillar 2 discusses the key principals of the process of supervisory review of capital adequacy; pillar 3 outlines the measures necessary for promoting market discipline in the banking market.

In this paper we concentrate on the first pillar, in which Basel II allows banks to use a range of approaches for determining their capital requirements against credit risk. The two main groups of approaches which banks can adopt in this respect are:

a) The Standardized approach, which refines the risk weights of the 1988 accord (Basel I) by the use of external ratings while leaving essentially unchanged the capital charges for loans to unrated companies.
b) The **Internal Rating Based (IRB)** approach which allows banks to compute the capital charges for each exposure using their own estimates of probabilities of defaults \((PD)\) and their Loss Given Defaults \((LGD)\).

Basel II represents a major change in banking regulation. As such it raises a series of important questions regarding its impact on the behavior of banks and their capital levels and on the banking system as a whole. Some of the important issues in this context are the effects of Basel II on banks’ lending policies, the interest rate and the amounts of loans in different market segments: retail vs. corporate; domestic vs. emerging markets etc. The literature on these issues is rather limited, since the Basel II Capital Accord was published only recently. Cave, et al (2003) find a significant reduction in capital requirements for commercial credit under the IRB approach compared with the current rule. French (2004), using data for all FDIC-insured banks, finds a large percentage reduction in capital requirements under the IRB approach.

Two recent papers deal with the pricing of loans under the new capital accord. Repullo and Suarez (2004) analyze the loan pricing implications of the new capital requirements of Basel II assuming a perfectly competitive market for business loans. Their model implies that low risk firms will have their loan rates reduced by banks using the IRB approach, while high risk firms will avoid increases in their loan rates by borrowing from banks adopting the Standardized approach of Basel II. Hasan and Zazzara (2006) propose a methodology for estimating risk-adjusted rates for the banks’ corporate loans (and the

3 Specifically, there are two proposed variants of the IRB approach; The foundation IRB (FIRB) approach in which the banks are expected to provide an estimate of the PDs of each borrower while a formula (to be presented later in the paper) gives the corresponding capital charge: an Advanced IRB (AIRB) in which the banks also provide their own estimate of the LGD. In particular, if banks choose the IRB approach, they have to provide their own estimate of the LGD for retail customers. All the terms appearing in the capital charge formula will be defined and presented later in the paper.

4 Liebig, Porath, di Mavro and Wedow (2004), using German bank level data, find that Basel II should have a limited effect on lending to emerging markets.
related EVA and RAROC measures) using the same inputs needed to calculate the Basel II capital requirements.

In this paper we analyze the impact of the new rules on the pricing of bank loans. Specifically, we investigate the impact of the two possible approaches (IRB and the Standardized approach), while relying on the PD distribution of the bank’s loan customers. In this analysis we distinguish between households (retail customers) and corporates (wholesale customers). We analyze the different effects in the context of a model of a banking firm operating under uncertainty in an imperfectly competitive loan market. This particular structure was found to characterize most European banking systems in recent years See Claessens and Laeven (2004) and Berg and Kim (1998)5.

In our loan pricing model the interest rate charged on loans has four components: the financial funding cost, risk premium to compensate for the risk of default by the borrower, a premium reflecting market power exercised by the bank, and the sensitivity of the cost of capital raised to changes in loans extended. In this paper, we make a distinction between corporates and households. Data on prices and quantities of retail and corporate lending are usually not directly available, a limitation of numerous previous studies. We however were able to obtain such data for one of the leading banks in Israel. This distinction enables us to consider the effect of the greater market power which the banks may be able to exercise on households relative to corporates.

The paper is organized as follows: Section 2 briefly summarizes the Basel II Capital Accord, outlining the Standardized approach and the Internal Rating Based (IRB) approach. Section 3 presents the model of a banking firm used for determining the interest rate on loans in equilibrium. Since we are using Israeli data, Section 4 is devoted to a description of the structure and other features of the Israeli banking system. Section 5

5 Berg and Kim (1998) study the oligopolistic behavior of multioutput banks which sell their outputs in two distinct markets: retail and corporate banking markets using Norwegian banking data.
presents the empirical estimation (based on simultaneous equations, using Two Stage Least Squares regression analysis) of the possible impact of the new Capital Accord on the interest rates which the banks charge their two groups of customers: households and corporates. Section 6 summarizes the main results and presents their possible implications.

Basel II permits banks a choice between two methodologies for calculating their capital requirements for credit risk: a) The Standardized approach which measures credit risk, primarily on the basis of credit assessments by external rating agencies; b) An Internal Rating-Based approach (IRB), which enables banks to use their internal rating system to measure credit risk.

The Standardized approach revises the risk weights of the Basel I Accord (1988). Under the new approach, the range of weights of credit risk is expanded from the current range of 0% to 100% to a new range of 0% to 150%, where weights are determined by an external rating agency. Table 1 provides a description of the new weights related to the three major categories of borrowers (sovereign, banks, corporates and retail costumers).
Table 1: Risk weights for capital allocation according to the Standardized approach of Basel II (percent)

<table>
<thead>
<tr>
<th>Credit Assessment</th>
<th>AAA to AA-</th>
<th>A+ to A-</th>
<th>BBB+ to BBB-</th>
<th>BB+ to B-</th>
<th>Below B-</th>
<th>Unrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sovereigns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Option 1</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3 months</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>Over 3 months</td>
<td>20</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Corporates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

1) The risk weight for retail portfolios (individual person or persons or small businesses) which meet certain criteria (product, diversification of retail portfolio, low value of individual exposure) is 75% (in Basel I the risk weight was 100%).

2) The risk weight for lending secured by mortgages on residential property is 35% (in Basel I the risk weight was 50%).
The Internal Rating-Based Approach (IRB) of Basel II focuses on the frequency of bank insolvencies arising from credit losses. According to this approach the total loss (TS) of a bank for a certain confidence interval is given by the Value-at-Risk (VaR) threshold. This total loss (TS) can be decomposed to an expected loss (EL) – which should be covered by loan loss provisions, and to an unexpected loss (UL) – which should be covered by capital that provides a buffer for protecting the debt holders against extreme. Capital is therefore determined according to the difference between total loss and expected loss. See Figures 1 and 2.

The IRB approach specifies the method of calculating the unexpected loss (UL) – to be covered by capital requirements for three types of asset classes (corporates, sovereigns and banks). The formula for calculating the capital requirements (K) as a percentage of the bank’s Exposure at Default (EAD), which is based on a model assuming portfolio invariance (Gordy 2003) and a normal distribution function to measure the borrower's PD (Vasicek 2002) is:

\[
K = \left[\text{LGD} \times N \left(\frac{N^{-1}(PD) + \frac{1}{2} \rho \frac{1}{\sqrt{1-\rho}} N^{-1}(0.999)}{\sqrt{1-\rho}} \right) - [PD \times LGD] \right] \times A^*
\]

Alternatively to equation (1), the unexpected loss (UL) or the required capital as a percent of EAD can be written as follows:

\[
\frac{UL}{EAD} = K = \frac{VaR}{EAD} - [PD \times LGD]
\]

6 For other exposures such as retail and equity (stocks) there are several adjustments that are made in equation (1) through \(A^* \), \(\rho \) (see footnotes 8 and 9).

7 Portfolio invariance means that the capital required for any given loan should only depend on the risk (PD, LGD and EAD) of that loan and must not depend on the risk of the portfolio it is part of.

This characteristic is essential for calculating and applying the IRB framework, as presented in equation (5). Otherwise, one has to recognize the diversification effect of the loan portfolio in calculating the capital charges (K).

8 For further explanation for formula (1) and the meanings of its components see BIS (2005).
where,

\(PD \) = probability of default, per rating grade, which gives the average percentage of borrowers that default in this rating (normally in the course of one year).

\(LGD \) = loss given default, which is the percentage of exposure which the bank might lose if the borrower defaults i.e., (1- Recovery rate).

\(EAD \) = exposure at default, which is an estimate of the amount of credit outstanding if the borrower defaults.

\(N (x) \) = the cumulative distribution function for a standard normal random variable (i.e. the probability that a normal random variable with mean zero and variance of one is less or equal to \(x \)).

\(N^{-1}(x) \) = the inverse cumulative distribution function for a standard normal random variable.

As the equation shows, the Basel Committee chose 99.9% percentile confidence interval, where, \(N^{-1}(0.999) \approx 3.09 \).

\(\rho \) = the weighted (by \(\lambda \)) correlation between the different exposures (different credits), determined by the Basel committee which shows how the asset value of one borrower (exposure) depends on the asset value of another borrower (exposure)\(^9\).

\(A^* \) = a component used to adjust capital requirements to the effective time to maturity \((M) \) and to the probability of default \((PD) \)\(^10\).

\(^9\) The equation of \(\rho \) is: \(\rho(PD)=0.12\lambda+0.24(1-\lambda)-0.04[1-(S-5)/45] \) where, \(\lambda = \frac{1-e^{(50-PD)}}{1-e^{(-50)}} \) and \(S \) = the size (determined by the extent of sales) of the corporate.

\(^10\) The \(A^* \) component is specified as follows: \(A^*(M, PD) = [1-1.5b(PD)]^{-1} \times [1+(M-2.5)b(PD)] \)

where, the coefficient \(b \) is determined by the Basel Committee as \(b = [0.11852 - 0.05478 \times \ln(PD)] \)

The formula for the effective time to maturity is: \(M = \sum t \times CF_t / \sum CF_t \)

where, \(CF_t \) = The cash flows (principal, interest payments and fees) of the loan in period \(t \).

Both, theoretical and empirical evidence suggest that long-term credits are riskier than short-term credits.

As a consequence, the capital requirement \((K) \) should increase with maturity \((M) \); \(\frac{\partial K}{\partial M} > 0 \).
Accordingly, the unexpected losses (UL) in monetary terms, K^*, can be written as:

$$K^* = K \times EAD.$$

It can be shown that PD, LGD and EAD are positively related to K^{11}:

$$\frac{\partial K}{\partial PD} > 0; \frac{\partial K}{\partial LGD} > 0 \text{ and } \frac{\partial K}{\partial EAD} > 0$$

11 It can also be shown, that in the relevant range, $\frac{\partial K}{\partial \rho} > 0$. An intuitive explanation to the positive relation between ρ and K is the fact that as the correlation between the components of the loan portfolio (borrowers or sectors) is lower, loan portfolio is more dispersed or less risky, and less capital is therefore required to cover the unexpected losses in the loan portfolio. The opposite will happen when the correlation between the components of the loan portfolio is higher.
Figure 1: The probability of losses (TL, EL and UL) under the framework of Basel II

Total loss (TL) = Value at Risk (VaR)

Figure 2: Credit losses (total, expected and unexpected) within the framework of Basel II
3. The Loan Pricing Model

The model of the optimal behavior of a commercial bank presented here assumes that the banks are risk neutral and that the banking industry is characterized by imperfect competition. This model is based on studies by Klein (1971) and Sealey (1980), which were applied and expanded in several studies of Israel’s banking system (for example Barnea, Landskroner, Paroush, and Ruthenberg, (1999) and Paroush and Ruthenberg (2003)).

In our model, the commercial bank operates in the primary market, in which it raises deposits from the public and extends credit to it. The bank also operates in the secondary market in order to bridge surpluses or deficits in its reserves, where this market involves transactions with other commercial banks (interbank deposits), with the central bank (monetary loans or deposits with the central bank), and in the financial markets (purchases and sales of Treasury securities, for example). In addition, the bank holds capital as required by the regulator, which serves as a cushion against unexpected losses (primarily from its credit portfolio).

According to the above description, the expected profits of the individual commercial bank are:

\[
E(\Pi_i) = (1 - PD)(1 + R_L) \cdot L_i(R_L, \alpha) - (1 + R_d)D_i(R_d, \beta) - (1 + R) \cdot Z - k_i \cdot K_i^*(L_i) - F_i
\]

where,

\[L(R_L, \alpha) = \text{the demand function for bank credit that relates (negatively) to the own interest rate } (R_L), \text{ and to a shift parameter } \alpha \text{ that represents income and substitution effects. Thus}
\]
\[
\frac{\partial L^d}{\partial R_L} < 0 \quad \text{and} \quad \frac{\partial L^d}{\partial (\text{income effect})} > 0 \quad \frac{\partial L^d}{\partial (\text{substitution effect})} < 0
\]

\(D(R_L, \hat{\beta})\) = the supply function of the public’s deposits that are affected (positively) by the own interest rate \((R_d)\) and shift parameter \(\hat{\beta}\).

\(Z = \) the activity of the bank in the secondary market.

\[Z = \left[L - (1 - r)D \right] \text{where } r = \text{the reserve requirement on public deposits.} \]

\(Z\) can be positive, negative or zero.

If \(Z > 0\), the bank has a shortage of sources in the primary market, and will thereby raise funds in the secondary market at interest rate \(R_{w}\), e.g., discount-window borrowing or interbank borrowing.

If \(Z < 0\), the bank has excess sources (funds) raised in the primary market, and buys assets in the secondary market earning interest rate \(R_b\), such as the interest paid on a deposit with the Bank of Israel or the purchase of a Treasury security.

If \(Z = 0\), the uses in the primary market equal the sources in that market, with the result that the bank will not be active in the secondary market.

Given the above, we define the secondary market at interest rate, \(R\), as follows:

\[R = R_b + I(R_w - R_b), \quad \text{where } I = \begin{cases} 1, & Z > 0 \\ 0, & Z < 0 \end{cases} \]

We assume that the bank cannot act as a borrower and a lender in the secondary market simultaneously.

\(F = \) the operating cost function of the bank, which we assume to be constant in the short term.

\(k = \) the cost of equity (required rate of return).
$K^* =$ the required (regulatory) capital in monetary terms.

We assume that the capital requirements are determined according to the new Basel II Accord. Equation (2) assumes that the bank is risk neutral, meaning that the bank is indifferent to two possible investments: a risky investment (such as loans to the public) at an interest rate of R_L, taking into account the probability of default (PD) on the part of the borrower, and a risk-free investment at an interest rate of R_f. The indifference condition can be formulated as follows:

$$(1 - PD)(1 + R_L) = (1 + R_f).$$

Hence, $R_L = \frac{(1 + R_f)}{(1 - PD)} - 1$ and, $\frac{\partial R_L}{\partial PD} > 0$.

The short-term objective of the individual commercial bank is to maximize its expected profits with respect to its decision variables, amount of loans (L) and deposits (D). Accordingly, taking the first derivative of $E(\Pi)$ in (2) with respect to L, assuming $Z > 0$, yields the following first order condition 12:

$$(3)$$

$$\frac{\partial \Pi}{\partial L} = (1 - PD)(1 + R_L) \frac{\partial L(\cdot)}{\partial L} + L(\cdot)(1 - PD) \frac{\partial (1 + R_L)}{\partial L} - (1 + R_w) \frac{\partial L(\cdot)}{\partial L} - k \cdot \frac{\partial K^*}{\partial L} = 0$$

Rearranging the terms and summing over all banks, assuming that the market structure is Cournot-oligopolistic, yields an equality between marginal revenue (MR) and marginal cost (MC) as follows:

$$(3a)$$

$$\left(1 - PD\right)\left(1 + R_L\right) \left[1 - \frac{H}{\eta}\right] = \left(1 + R_w\right) + k \cdot \frac{\partial K^*}{\partial L}$$

where, $\eta = -\frac{\partial L}{\partial R_L} \frac{R_L}{L}$ is the elasticity of demand for loans;

$H = \sum_i S_i^2$ is the Herfindahl-Hirschman index of concentration in the loan market

where, $S_i = (L_i/L)$ is the market share of bank i in the loan market.

12 The assumption here is that EAD is equal to the amount of the bank’s outstanding loans (L), with the result that $\frac{\partial K^*}{\partial L} = K$.

14
Substituting the risk neutrality condition, i.e., \((1-PD)(1+R_L) = (1+R_f)\) and solving for \((1+R_L)\), yields;

\[
(1 + R_L) = \theta + (1 + R_f) \frac{H}{\eta} + (1 + R_w) + k \frac{\partial K^*}{\partial L}
\]

(4)

where, \(\theta = R_L - R_f\) is the yield differential (i.e. the risk premium) which can also be written as \(PD(1 + R_L)\) (see Paroush and Ruthenberg (2003)).

From (4) it follows that the interest rate on loans is determined by the risk premium \((\theta)\); the industry’s market power as determined by its concentration \((H)\); the market elasticity of demand for loans \((\eta)\); the risk free rate \((R_f)\) (such as the prime rate); the cost of raising funds in the secondary market – cost of debt \((R_w)\); and the multiple of the cost of capital (equity) raised \((k)\) by the sensitivity of the required capital to changes in the amount of loans extended \(\left(\frac{\partial K^*}{\partial L}\right)\).

In general terms, equation (4) can be written as follows:

\[
(1 + R_L) = g \left(\text{credit risk, market structure, cost of debt, cost of equity and the sensitivity of capital to loans extended}\right)
\]

Figure 3 illustrates the sensitivity of bank loans and interest rates to capital charges and \(\left(\frac{\partial K}{\partial L}\right)\) the cost of equity \((k)\). As can be seen, the rate of interest on loans \((R_L)\), after equating marginal revenue with marginal cost see equation (3A), may vary between \(R_L1\) and \(R_L2\). We claim that the distribution of \(R_L\) under the new regime depends (all else being equal) on the distribution of \(PD's\) of the bank’s loans to its retail customers and to corporates.
Figure 3: Determining the interest rate on loans (R_L) and the quantity of loans (L) in a non-competitive market in response to changes in capital requirements within the framework of the Basel II capital accord.
4. The structure of the Israeli Banking System

At the end of 2005 the Israeli banking system was comprised of five large banking groups, (Figure 1A in the appendix) two small independent banks, and two branches of large foreign banks (HSBC and Citibank). The number of banking corporations operating in Israel was 29 (15 commercial banks, 5 mortgage banks, 2 foreign banks and 7 other financial institutions) compared with 63 banking corporations that operated at the end of 1980. The decrease in the number of banks during that period is the result of bankruptcies or mergers and acquisitions, principally between small and large banks\(^\text{13}\).

Banks in Israel provide what can be described as universal banking services. In addition to classic banking intermediation, the large commercial banks heading the banking groups have subsidiaries that engage in several activities complementary to commercial banking. These activities include mortgage banking, credit cards, overseas banking (via subsidiaries and branches), direct and indirect ownership of companies that operate in the financial and capital markets (such as trading in securities, management of investment companies and investment banking), and insurance companies. The activities described above enable the banking groups to utilize economies of scale and scope and to diversify risks more effectively than small independent banks (see Landskroner, Ruthenberg and Zaken, (2005)).

\(^{13}\) Commercial banks supply financial services via 992 branches and 1,370 ATMs (the number of which increased substantially during the last 20 years) and via internet banking.
The Israeli banks are active in three segments of intermediation: the unindexed local currency (nominal) segment (which accounts for approximately 40% of their total assets), the CPI-indexed segment, and the foreign currency segment (foreign-currency denominated and indexed). The share of the last two segments in the banks’ total assets is approximately 30% each.

The Israeli banking system is characterized by a high degree of concentration; the largest three banking groups account for close to 77% of the system’s total assets, and the Herfindahl-Hirschman index of concentration (\(H\) index) is 0.228\(^{14}\).

Another important feature of the Israeli banking system relates to capital adequacy. Although all banks meet the minimum capital adequacy requirement of 9% (see Figure 5), the excess capital ratio above the minimum required in Israel is one of the lowest among developed countries (see Figure 6)\(^{15}\).

\(^{14}\) The high concentration level in Israel is also reflected in international comparison. The \(H\) Index for the Israeli banking system's total assets was 0.228 in 2005, vs. an overall mean of 0.163 for foreign banking systems and 0.187 for Israel's peer group (see Figure 4).

\(^{15}\) For an updated detailed analysis of the Israeli banking system, see the Annual Survey of Israel's Banking System (2005).
Figure 4: Concentration Index (Herfindahl-Hirschman) for Selected Countries – an international Comparison, 2005

1. Israel’s peer group includes eight countries comparable to Israel in terms of size of the economy, area of the country and size and concentration of the banking system: Belgium, Denmark, Greece, Ireland, Norway, Portugal and South Africa, seven of which appear in the above figure.

Source: Returns to the Bank of Israel from the supervisory authorities of the various countries and Bankscope.

Figure 5: Risk-Weighted Capital Ratio of the Five Major Banking Groups, 1999-2005

Source: Banking Supervision Department
Figure 6: Relative Excess Capital Adequacy* Ratios in Selected Banking Systems - An International Comparison, 2005

a) The relative excess capital adequacy ratio is calculated as the percentage deviation of the actual capital ratio from the minimum required ratio. The minimum capital adequacy ratio required in each country is 8 percent, except for Israel where the minimum required ratio is 9 percent and in Canada and South Africa where the minimum required ratio is 10 percent.

Source: Bankscope Data.
5. Empirical Estimation of Loan Pricing in the Israeli Banking System

In this section we estimate the loan and interest rate equations in the unindexed local currency segment for retail and corporate customers. The main reason for using data on the unindexed segment is its availability, particularly the ability to distinguish between rates and the amount of loans extended to retail customers versus corporates. The assumption here is that the activity of commercial banks in the unindexed segment provides a good approximation for their total activity as financial intermediaries.

Because of the simultaneity inherent in the analysis, as discussed above, the interest rate on loan-equation (4) was estimated simultaneously with the demand for loans (L^d) – equation (5), using the Two Stage Least Squares (2SLS) technique.

In general terms, the two equations comprising the system of equations are:

The interest rate on loans equation: $R_i = f(\text{credit risk, market structure, cost of debt, cost of equity and the sensitivity of capital charges to loans extended})$.

The demand for loans equation: $L^d = g(\text{interest rate on loans, the income effect (economic activity) and the substitution effect})$.

All of the variables in the estimated equations were calculated after a logarithmic transformation was performed, with the exception of interest rates, yields and other variables that had negative values during the time of analysis, on which we performed a $\ln(1+x)$ transformation. The sample period of the study is September 1998 – May 2006, the frequency of the data is monthly and the bank-specific data were obtained from one of the largest banks in Israel.

Since Basel II distinguishes between corporate customers and retail customers, we ran the system of equations separately for the two populations. Table 2 lists and defines the variables used in these equations while Table 3 summarizes the regression results for both samples.
Table 2: Definitions, notations and the expected effects of the Independent variables

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Variable</th>
<th>Measure</th>
<th>Notation</th>
<th>Expected effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Demand for loans</td>
<td>For corporates: average amount of loans to corporates.</td>
<td>L_c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For retail customers: average amount of loans to retail customers.</td>
<td>L_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interest on loans</td>
<td>For corporates: Interest income plus management fees divided by the average amount of loans.</td>
<td>RLC</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For retail customers: Interest income plus management fees divided by the average amount of loans.</td>
<td>RLR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Income effect</td>
<td>For corporates and retail customers: Percentage change in Gross Domestic Product.</td>
<td>$%\Delta GDP$</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Substitution effect</td>
<td>For corporates and retail customers: Standard deviation of expected inflation during 24 month period.</td>
<td>σ_p</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For corporates and retail customers: Percentage change in funds (bonds and stocks) raised on the Tel Aviv stock exchange.</td>
<td>$%\Delta F$</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Interest on loans</td>
<td>For corporates: interest income plus management fees divided by the average amount of loans.</td>
<td>RLC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risk</td>
<td>For corporates: the ratio of loan loss provisions to the average amount of loans.</td>
<td>$LLPC$</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For retail customers: the ratio of loan loss provisions to the average amount of loans.</td>
<td>$LLPR$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>For corporates and retail customers: Market share of total assets in the unindexed segment.</td>
<td>MS</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Cost of debt (secondary-market)</td>
<td>Yield to maturity on a 1-year Treasury Bill.</td>
<td>TB</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Cost of equity sensitivity</td>
<td>The multiple of the cost of equity (k), by $\frac{\partial K^*}{\partial L} \text{ assumed to be 9%}.</td>
<td>$k \cdot \left[\frac{\partial K^*}{\partial L} \right]$</td>
<td>Positive</td>
</tr>
</tbody>
</table>
Table 3: Regression Results of simultaneous equation system (using 2SLS) of loan rates (R_L) and demand for loans (L_d) for corporates and retail customers.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>corporates</th>
<th>retail customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.12</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(-2.24)**</td>
<td>(-1.20)</td>
</tr>
<tr>
<td>Loan loss provisions</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>$\ln(1+\text{LLP}c){t-3}$</td>
<td>(1.87)*</td>
<td></td>
</tr>
<tr>
<td>Loan loss provisions</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>$\ln(1+\text{LLP}p){t-1}$</td>
<td>(1.84)*</td>
<td></td>
</tr>
<tr>
<td>Market share</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>$\ln(1+\text{MS})_t$</td>
<td>(1.85)*</td>
<td>(2.12)**</td>
</tr>
<tr>
<td>Cost of debt (secondary market)</td>
<td>1.35</td>
<td>1.10</td>
</tr>
<tr>
<td>$\ln(1+\text{TB})_t$</td>
<td>(8.99)***</td>
<td>(14.42)***</td>
</tr>
<tr>
<td>Cost of equity sensitivity</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>$(\ln(1+k)+\ln(1.09))_t$</td>
<td>(1.63)*</td>
<td>(1.97)**</td>
</tr>
<tr>
<td>$AR(1)$</td>
<td>0.78</td>
<td>0.52</td>
</tr>
<tr>
<td>$D.W$</td>
<td>2.25</td>
<td>2.11</td>
</tr>
<tr>
<td>\bar{R}^2</td>
<td>0.95</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Demand for loans (Equation 5)

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>corporates</th>
<th>retail customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>17.20</td>
<td>15.61</td>
</tr>
<tr>
<td></td>
<td>(62.87)***</td>
<td>(61.10)***</td>
</tr>
<tr>
<td>Interest rate on loans</td>
<td>-2.27</td>
<td>-1.06</td>
</tr>
<tr>
<td>$\ln(1+R_{t,c})$</td>
<td>(-1.62)*</td>
<td>(-1.88)*</td>
</tr>
<tr>
<td>Interest rate on loans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(1+R_{t,s})$</td>
<td></td>
<td>(-1.88)*</td>
</tr>
<tr>
<td>Changes in Gross Domestic Product</td>
<td>0.41</td>
<td>1.47</td>
</tr>
<tr>
<td>$\ln(1+%\Delta GDP)_{t-5}$</td>
<td>(1.68)*</td>
<td>(1.78)*</td>
</tr>
<tr>
<td>Changes in Gross Domestic Product</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln(1+%\Delta GDP)_{t-3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation of expected</td>
<td>-0.11</td>
<td>-0.09</td>
</tr>
<tr>
<td>Inflation $\ln(1+\sigma_p)_{t-5}$</td>
<td>(-1.78)*</td>
<td>(-2.02)**</td>
</tr>
<tr>
<td>Standard deviation of expected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflation $\ln(1+\sigma_p)_{t-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in funds raised</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>$\ln(1+%\Delta F)_{t-3}$</td>
<td>(0.25)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>$AR(1)$</td>
<td>0.91</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>(14.80)***</td>
<td>(10.68)***</td>
</tr>
<tr>
<td>D.W</td>
<td>1.52</td>
<td>1.72</td>
</tr>
<tr>
<td>$\overline{R^2}$</td>
<td>0.98</td>
<td>0.77</td>
</tr>
</tbody>
</table>

The t statistics appear in parentheses under the coefficient.

*** Indicates significance at the 1% level

** Indicates significance at the 5% level

* Indicates significance at the 10% level
The main findings are as follows:

Corporates:

All the independent variables in the demand for loans equation with the exception of the substitution (contestability) variable (defined as funds raised on the Tel Aviv Stock Exchange) obtained their expected signs and were statistically significant:

a) As expected, the change in Gross Domestic Product \((GDP) \) which represents the income effect was found to have a positive impact on the demand for loans. This finding suggests that during periods of growth in the economy, the demand for loans by corporates increases while during periods of recession their demand for loans declines.

b) The substitution effect was decomposed into substitution within the banking system, and substitution (contestability) facing the entire banking system. The substitution within the banking system is estimated as inflationary uncertainty (measured by the standard deviation of monthly inflation)\(^{16}\) and as expected, has a negative impact on the banks' demand for loans. In this respect we assume that the demand for indexed loans is a substitute for unindexed local currency loans. With regard to contestability facing the entire banking system from substitutes for bank loans, we used the variable: funds (equity and bonds) raised by corporates on the TASE (Tel Aviv Stock Exchange). This variable was found to be statistically insignificant. We can therefore conclude that during the period examined the stock market did not constitute a competitive threat to the banking system\(^{17}\).

c) The interest rate charged on unindexed loans obtained a negative sign, as expected, and was found to be statistically significant.

With respect to the interest rate equation, which is the main focus of this paper, all of the explanatory variables obtained their expected signs and were statistically significant.

\(^{16}\) The standard deviation of inflation was calculated using monthly inflation during the previous 12 months.

\(^{17}\) It should be noted that in recent years (since the beginning of 2003) there has been a significant increase in the amount of funds raised by corporates in the TASE as well as in the amount of funds raised through other non-banks sources (see Figure 7). However, this period is probably too short to have a significant effect in our regression analysis.
The explanatory variables in the interest rate equation include:

a) Loan-loss provisions for corporates as a percent of loans extended. This variable represents the risk component in the interest rate equation (that is, a proxy for θ in equation (4)), and as expected, was found to have a significant positive effect on the interest rate.

b) The market share of the individual bank in total assets in the unindexed segment. This variable represents the structure in the unindexed loan market (a proxy for H in equation (4)) as expected it was found to have a positive and significant impact on the interest rate.

c) The yield to maturity on a 1-year Treasury Bill. This variable represents the cost of debt in secondary market (R_w in equation (4)) and as expected, was found to have a positive impact on interest rate.

d) The cost of equity sensitivity, namely the multiple of the cost of equity (k) by the sensitivity of capital charges to the amount of loans extended ($\frac{\partial K^*}{\partial L}$), was as expected found to have a positive and a significant impact on the interest rate.

Although the bank's economic capital is composed of 2/3 core equity capital (tier 1) and 1/3 subordinated debt (tier 2), we assumed that the bank's cost of capital is based on the cost of equity capital. For measurement purposes we applied the CAPM model, whereby the expected (required) return on equity of bank i (its cost of equity) is written as:

$$k_i = E(R_i) = R_f + \beta_i(R_M - R_0).$$

where:

R_f = The risk free rate represented by the average annual yield to maturity on a Treasury Bill with 360 days maturity.

R_M = The market yield, represented by the average annual yield on the TA (Tel Aviv) 100 index measured during a 5 year period\(^{18}\).

\(^{18}\) The TA-100 Index is one of the TASE's leading indices, published since 1992. The index consists of the 100 stocks with the highest market capitalization in Israel.
\(\beta_i = \) The beta (\(\beta_i \)) of bank \(i \). This was estimated by a series of OLS regression equations of the monthly stock return of bank \(i (R_i) \) on the monthly return of the TA-100 index (\(R_{M} \)), over a 24 month moving window:

\[R_i = \alpha_0 + \beta_i R_M + e_i. \]

After adding to the loan regression equation the variable \(AR(1) \) (Autoregressive Error Process of the first order), there was no evidence of a serial correlation, as reflected by the values of the Durbin-Watson statistics. The adjusted \(R \) squares \((R^2) \) were relatively high in the interest rate and the demand for loans regression equations (0.95 and 0.98 respectively).

Figure 7: The difference between funds raised by corporates from non-bank sources and changes in their bank credit. Annual data, 1992-2006

Source: Banking Supervision Department.
Retail customers

Similar equations were run for retail customers (mostly households). The results are also reported in Table 3 and the variables used are defined in Table 2. The regression results in respect of retail customers are for the most part encouraging, in the sense that all the independent variables obtained their expected signs and were statistically significant. However, there are several exceptions in these equations compared to those for corporates:

1) In the loan demand equation the variable representing the substitution effect includes only the substitution within the banking system that is represented by the standard deviation of monthly inflation. The reason for the exclusion of a variable that represents the substitution outside the banking system is that in Israel households, in contrast to corporates, do not have good substitutes outside of the banking system.\(^{19}\)

2) In the interest rate equation, the risk variable is measured by the loan loss provisions to retail customers.

The adjusted R^2 were relatively high in both equations (0.93 and 0.77 in the interest rate and in the loan demand regression equations respectively). After introducing AR(1) variables there was no evidence of serial correlation in either of the equations.

\(^{19}\) To verify this assertion we included the variable bonds and stocks raised in the TASE (i.e. $\%\Delta F$) in the demand for loans by retail customers' equation. This however proved to be insignificant.
Out-of sample-prediction

Based on the regression results (reported in Table 3), we performed a simulation (that is, out-of-sample prediction) with regard to the interest rates which the bank would charge its corporate and the retail customers when the Basel II capital accord is implemented. The simulation is performed with respect to the two approaches available to banks: the Standardized approach and the Internal rating based (IRB) approach.

With regard to corporates, the simulations are presented in figure 8. For the sake of convenience, we plotted both approaches on the same diagram and the horizontal axis therefore covers both PD's (for the IRB approach) and credit ratings (for the Standardized approach).

The simulation was performed as follows:

Firstly, we assume that the independent variables (loan loss provisions [LLP], market share [MS], Treasury Bills [TB] and cost of equity [k]), that appear in equation (4) and in Table 3, obtain their average values which prevailed during the period June 2003 – May 2006. The variable \(\ell n(1+\frac{\partial K}{\partial L}) \), on the other hand, is equated to zero, meaning that the PD's of customers is assumed to equal to zero. This assumption is necessary in order to derive the expected loan rate as a positive function of PD's. Based on the above assumptions, the intercept of the expected loan rate path is equal to 6.22% using the IRB approach and 6.42% for the Standardized approach.

Secondly, we assume that from then onwards, loan rates are likely to be affected by the capital required according to the Standardized approach based on the weights reported in Table 1 or the IRB approach based on equation (1). As can be seen, the average actual effective loan rate for corporates for the period June 2003-May 2006, was 7.49%. The break-even point (the intersection of the actual rate with the expected rate) yields a PD of 5.3% for the IRB approach and a PD of 10% for the Standardized approach.

20 It should be emphasized that this period was characterized by a growth in the Israeli economy after few years of recession, and we assume that during the next three years the economy will continue to grow.
The diagram shows that all corporate customers with PD's lower than 9.4% (which is the intersection of the expected rate of the IRB and the Standardized approach), approximately 95% of corporate customers will be charged a rate of interest lower than the average prevailing during the last three year period.\(^{21}\) This lower rate will be charged by banks adopting the IRB approach. On the other hand, with banks adopting the Standardized approach, the reduction in the loan rates will be available to customers with a PD higher than 9.4%.

From the above analysis we can therefore conclude that high quality (low risk) customers will enjoy a reduction in loan rates only at banks that adopt the IRB approach as opposed to the Standardized approach. On the other hand, the low quality (high risk) customers, those with PD’s higher than 9.4%, will be better off obtaining loans from banks which adopt the Standardized approach\(^ {22}\). These results and the conclusions derived from them are quite similar to the those obtained by Repullo and Suarez (2004) although they use hypothetical loan rates and the components of these rates are incomplete.

We performed the same type of analysis for retail customers (Figure 9).

The results are similar to the ones obtained for corporates although the values of the PD's in equilibrium are different. It is possible to conclude from the Figure that retail customers with PD's lower than 13.4% will prefer banks that adopt an IRB approach while very risky customers (with PD's higher than 13.4%) will prefer banks that adopt the Standardized approach.\(^ {23}\) It can be concluded from the above analysis that nearly all retail customers will prefer banks that adopt an IRB approach\(^ {24}\).

\(^ {21}\) The average PD for small / medium corporates was found to be 1.61% for other non-G10 Group 1 countries by Basel quantitative impact study (BIS 2006a).

\(^ {22}\) That is we may expect a shift in the demand for loans between banks according to the quality of the borrowers depending on the approach adopted by the banks.

\(^ {23}\) The average PD for other retail customers was found to be 2.77% for other non-G10 Group 1 countries by the Basel quantitative impact study (BIS 2006a).

\(^ {24}\) It should be emphasized that the actual loan rates charged to retail customers are higher than those charged to corporates (for example, during the period 3.2006-5.2006 it was 11.43% vs. 7.49% respectively). This difference in the rates is reflected in the higher market power banks exercise on retail customers as opposed to corporates. (see Figure 10).
Figure 8: The actual loan rate (6.2003-5.2006) against the expected loan rate (based on regression 4+5) according to a Standardized approach and an IRB approach of Basel II, effective annual terms, Corporates; 09/1998-05/2006

Figure 9: The actual loan rate (6.2003-5.2006) against the expected loan rate (based on regression 4+5) according to a Standardized approach and an IRB approach of Basel II, effective annual terms, Retail; 09/1998-05/2006
Figure 10: The “Market Power”\(^1\) of Commercial Banks: Corporates vis-a-vis Retail Customers; in Israel 03/1998 - 08/2006

1. The market power index is: \((R_l - R_{m})/R_l\)
 Where
 \(R_l\) = For retail and corporates: the average interest on credit plus income from credit management fees.
 \(R_{m}\) = The Bank of Israel interest rate.

Source: Banking Supervision Department.
6. Summary and conclusions

In this paper we derive a loan rate equation for a commercial bank, assuming that the bank is risk neutral and operates in a market characterized by imperfect competition. Based on the data of a leading bank in Israel and the PD’s of its customers, by means of simultaneous equations regression analysis (using Two-Stage-Least-Squares technique), we estimated the impact of the Basel II capital accord on the loan rates which this bank will charge its corporate and retail customers under the Standardized and the Internal based approaches (IRB).

The results show categorically that high quality (low risk) corporate customers will enjoy a reduction in loan rates if they obtain loans from banks that adopt an IRB model. On the other hand, low quality (high risk) corporate customers will enjoy a reduction in loan rates only if they obtain loans from banks that adopt the standardized approach.

With respect to retail customers, almost all these customers will enjoy a loan rate reduction if they obtain loans from banks that adopt the IRB approach.

These results have a direct implication on the risk distribution among banks. In particular, the large and high quality banks, which may be expected to adopt the IRB approach, will tend to serve the less risky customers while the small and low quality banks may be expected to adopt the Standardized approach, and will thus tend to serve the more risky customers.
Figure 1A: The Structure of Israel’s Banking Groups, December 2005 (percent)

Bank Hapoalim Group
Bank Hapoalim B.M. (1)
Bank ‘Yahav’ Le’Oved Hapakdim Ltd (1)
Bank Mizrahi Leumi Bank Ltd (1)
Carmel Bank Ltd (2)
Ozar Bank Ltd (2)
Peoples Capital Markets & Investments Ltd. (3)
Tnuva (7)

Bank Hapoalim (Switzerland) B.M. (3)
Bank Hapoalim Luxembourg S.A. (4)
Bank Hapoalim Cayman Islands B.M. (5)
Bank of New York (2)
Inter Maritime Bank (3)

Bank Leumi Group
Bank Leumi Le-Israel (1)
Arab Israel Bank Ltd (1)
Leumi Mortgage Bank Ltd (3)
LeumiCard (7)
Bank Leumi USA (8)
Bank Leumi UK (8)
Bank Leumi Switzerland (6)
Bank Leumi Luxembourg (8)
Bank Leumi Latin America (8)

Total assets: NIS 907.2 billion

Herfindahl index: H = 0.228
CR4 = 77.3%

Definitions:
(1) Commercial banks
(2) Merchant banks
(3) Mortgage banks
(4) Financial institutions
(5) Joint service companies
(6) Foreign banks
(7) Credit card companies
(8) Subsidiaries abroad

Other Commercial banks:
Union Bank of Israel Ltd (1)
Bank of Jerusalem (1)
Ozar Hashulem HaRokamin Ltd (4)

Branches of foreign banks:
Citibank N.A. (6)
HSBC Bank PLC (6)

Other institutions:
Industrial Development Bank of Israel Ltd (10)
‘Hesed’ Kupat Hinchoueh Lehinchoueh Ltd, Haifa (4)

Joint Services Companies:
Bank Card Ltd
Automatic Bank Services Ltd

Israel Discount Bank Group:
Israel Discount Bank Ltd (1)
Mercuri Discount Bank Ltd (1)
Discount Mortgage Bank Ltd (3)
Israel Discount Bank of New York Ltd, USA (8)
Discount Bank (Latin America) (3)
Israel Discount Bank (Switzerland) (8)
Visa Co., 51 percent ownership and 63 percent voting rights

Statement:
a) This is process of realizing assets and liabilities, and due to be closed by July 2006.
b) Control of the group was sold to the First International Bank in January 2006.
c) Incorporating First International Bank, Eurafric Israel Ltd, Amin and Peoples American Express.
d) This bank was bought in March 2001, and in January 2006 was merged with Bank Hapoalim.
e) In November 2007 the name of the bank was changed to Mizrahi Tefahot Bank Ltd.
g) The Merchant Bank license was revoked in April 2005.

Source: Banking Supervision Department
* Israel Discount Bank owns 26.3 percent of The First International Bank of Israel, but this investment is not consolidated in the financial statements.
References

Bank of Israel, Banking Supervision Department, *Israel's Banking System, Annual Survey, 2005*.

Basel Committee on Banking Supervision, 2006a “Result of the Fifth Quantitative Impact Study (QIS 5)” BIS, June.

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.01</td>
<td>A.E Barnea – Interst Rate Spread: Evidence and Implications</td>
</tr>
<tr>
<td>91.02</td>
<td>A.E. Barnea and D. Geva – A Model for the Determination of Bank Reserves in Which There is a lender of last Resort</td>
</tr>
<tr>
<td>91.03</td>
<td>Y. Landskroner and D. Ruthenberg – Incorporating Foreign Exchange and Interest Rate Risks in Capital Adequacy Requirements</td>
</tr>
<tr>
<td>91.04</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>92.01</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>92.02</td>
<td>Y. Landskroner, D. Ruthenberg and D. Zaken – Regulation of bank’s market & interest Rate risks</td>
</tr>
<tr>
<td>92.03</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
<tr>
<td>92.04</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
<tr>
<td>95.01</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
<tr>
<td>95.02</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
</tbody>
</table>

Research Unit, Working Papers

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.01</td>
<td>D. Barnea – Interst Rate Spread: Evidence and Implications</td>
</tr>
<tr>
<td>96.02</td>
<td>D. Barnea and D. Geva – A Model for the Determination of Bank Reserves in Which There is a lender of last Resort</td>
</tr>
<tr>
<td>96.03</td>
<td>Y. Landskroner and D. Ruthenberg – Incorporating Foreign Exchange and Interest Rate Risks in Capital Adequacy Requirements</td>
</tr>
<tr>
<td>96.04</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>95.01</td>
<td>Y. Landskroner, D. Ruthenberg and D. Zaken – Regulation of bank’s market & interest Rate risks</td>
</tr>
<tr>
<td>95.02</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
</tbody>
</table>

Research Unit, Working Papers

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.03</td>
<td>D. Barnea – Interst Rate Spread: Evidence and Implications</td>
</tr>
<tr>
<td>95.04</td>
<td>D. Barnea and D. Geva – A Model for the Determination of Bank Reserves in Which There is a lender of last Resort</td>
</tr>
<tr>
<td>95.05</td>
<td>Y. Landskroner and D. Ruthenberg – Incorporating Foreign Exchange and Interest Rate Risks in Capital Adequacy Requirements</td>
</tr>
<tr>
<td>95.06</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>95.07</td>
<td>Y. Landskroner, D. Ruthenberg and D. Zaken – Regulation of bank’s market & interest Rate risks</td>
</tr>
<tr>
<td>95.08</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
</tbody>
</table>

Research Unit, Working Papers

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.01</td>
<td>D. Barnea – Interst Rate Spread: Evidence and Implications</td>
</tr>
<tr>
<td>96.02</td>
<td>D. Barnea and D. Geva – A Model for the Determination of Bank Reserves in Which There is a lender of last Resort</td>
</tr>
<tr>
<td>96.03</td>
<td>Y. Landskroner and D. Ruthenberg – Incorporating Foreign Exchange and Interest Rate Risks in Capital Adequacy Requirements</td>
</tr>
<tr>
<td>96.04</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>95.01</td>
<td>Y. Landskroner, D. Ruthenberg and D. Zaken – Regulation of bank’s market & interest Rate risks</td>
</tr>
<tr>
<td>95.02</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
<tr>
<td>95.03</td>
<td>D. Barnea – Interst Rate Spread: Evidence and Implications</td>
</tr>
<tr>
<td>95.04</td>
<td>D. Barnea and D. Geva – A Model for the Determination of Bank Reserves in Which There is a lender of last Resort</td>
</tr>
<tr>
<td>95.05</td>
<td>Y. Landskroner and D. Ruthenberg – Incorporating Foreign Exchange and Interest Rate Risks in Capital Adequacy Requirements</td>
</tr>
<tr>
<td>95.06</td>
<td>D. Ruthenberg – Structure Performance and economies of scale in banking in an emerging European market”</td>
</tr>
<tr>
<td>95.07</td>
<td>Y. Landskroner, D. Ruthenberg and D. Zaken – Regulation of bank’s market & interest Rate risks</td>
</tr>
<tr>
<td>95.08</td>
<td>D. Ruthenberg and R. Elias – “Cost economies and interest rate margins in a unified European banking market”</td>
</tr>
</tbody>
</table>
Giorgio Szego, University of Rome, La Sapienza – “A Critique of the Basel Regulation, or How to Enhance Im(moral) Hazards”.

Aram Melkonyan – “The Relevance of the Basel Agreement to the Russian Case: A Critique”.

Lev Aizenberg – “The Impact of the Basel Agreement on the Russian Banking Sector”.

Y. Landskroner, D. Ruthenberg and S. Pearl - "Market to Book Value Ratio in Banking – The Israeli Csae"

David Ruthenberg – "Competition in the Banking Industry: Theoretical Aspect and Empirical Evidence from Israel in an International Perspective"

Y. Landskroner and D. Ruthenberg – "Loan Pricing under Basel II in an Imperfectly Competitive Banking Market"