Optimal Policy under Dollar Pricing

KONSTANTIN EGOROV kegorov@NES.ru

DMITRY MUKHIN dmukhin@WISC.edu

Inflation: Dynamics, Expectations, and Targeting
July 13, 2021

Motivation

- "Dominant currency paradigm"
 - world prices set in dollars (Goldberg-Tille'08)
- ▶ show
- world prices sticky in dollars (Gopinath'15)
- asymmetric transmission of shocks (Gopinath et al'20)

Motivation

- "Dominant currency paradigm"
 - world prices set in dollars (Goldberg-Tille'08)
 - ▶ show
 - world prices sticky in dollars (Gopinath'15)
 - asymmetric transmission of shocks (Gopinath et al'20)
- What are implications of DCP for
 - 1 float vs. peg? (Friedman'53)
 - 2 capital controls? (Blanchard'17)
 - 3 Fed's policy and exorbitant privilege? (Bernanke'17, Gourinchas-Rey'07)
 - 4 gains from cooperation? from currency areas? (Mundell'61)

Motivation

- "Dominant currency paradigm"

 - world prices sticky in dollars (Gopinath'15)
 - asymmetric transmission of shocks (Gopinath et al'20)
- What are implications of DCP for
 - 1 float vs. peg? (Friedman'53)
 - 2 capital controls? (Blanchard'17)
 - 3 Fed's policy and exorbitant privilege? (Bernanke'17, Gourinchas-Rey'07)
 - 4 gains from cooperation? from currency areas? (Mundell'61)
- Relevant from both normative and positive perspectives

— can DCP rationalize policies followed by open economies?

• New Keynesian open economy model

- New Keynesian open economy model
- Key ingredients:
 - exporters use DCP
 - local firms use PCP

- New Keynesian open economy model
- Key ingredients:
 - exporters use DCP— local firms use PCP⇒ high ERPT into border prices
 - $\begin{array}{c} -- \text{ local firms use PCP} \\ -- \text{ foreign intermediates} \end{array} \right\} \Rightarrow \text{low ERPT into } \textit{retail prices}$

- New Keynesian open economy model
- Key ingredients:
- Otherwise general setup:
 - arbitrary assets, preferences, technology, nominal rigidities, shocks
 - fully non-linear stochastic solution

- New Keynesian open economy model
- Key ingredients:
- Otherwise general setup:
 - arbitrary assets, preferences, technology, nominal rigidities, shocks
 - fully non-linear stochastic solution
- Main findings:
 - optimality of inflation targeting for non-U.S. economies

- New Keynesian open economy model
- Key ingredients:
- Otherwise general setup:
 - arbitrary assets, preferences, technology, nominal rigidities, shocks
 - fully non-linear stochastic solution
- Main findings:
 - optimality of inflation targeting for non-U.S. economies
 - 2 global monetary cycle

- New Keynesian open economy model
- Key ingredients:
- Otherwise general setup:
 - arbitrary assets, preferences, technology, nominal rigidities, shocks
 - fully non-linear stochastic solution
- Main findings:
 - 1 optimality of inflation targeting for non-U.S. economies
 - 2 global monetary cycle
 - o no case for capital controls
 - conflict of interests between the U.S. and RoW

Relation to the Literature

Empirical evidence:

- prices are sticky in dollars: Goldberg & Tille (2008), Gopinath & Rigobon (2008), Gopinath, Itskhoki & Rigobon (2010), Gopinath (2016)
- international spillovers under DCP: Cravino (2014), Zhang (2018), Ilzetzki,
 Reinhart & Rogoff (2019), Gopinath et al (2019)

• Theories of currency choice:

- Krugman (1980), Corsetti & Pesenti (2002), Bacchetta & van Wincoop (2005), Engel (2006), Goldberg & Tille (2008), Chahrour & Valchev (2017), Gopinath & Stein (2017), Drenik, Kirpalani & Perez (2018), Mukhin (2018)
- Optimal policy in open economy:
 - PCP/LCP: Clarida, Gali & Gertler (2001, 2002), Devereux & Engel (2003),
 Benigno & Benigno (2003), Gali & Monacelli (2005), De Paoli (2009),
 Engel (2011), Corsetti, Dedola & Leduc (2010, 2018)
 - <u>DCP</u>: Corsetti & Pesenti (2007), Devereux, Shi & Xu (2007), Goldberg & Tille (2009), Casas, Diez, Gopinath & Gourinchas (2017)
 - $\Rightarrow\,$ much more general setup, different intuition, new results. . .
 - capital controls: Jeanne & Korinek (2010), Bianchi (2011), Farhi & Werning (2012, 2013, 2016, 2017), Costinot, Lorenzoni & Werning (2014) $_{3/11}$

SETUP

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli'2005)
 - U.S. is symmetric except for DCP

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli'2005)
 - U.S. is symmetric except for DCP
- - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity θ , micro elasticity ε , home bias $1-\gamma$
- Firms: show
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli'2005)
 - U.S. is symmetric except for DCP
- Households:
 - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity θ , micro elasticity ε , home bias $1-\gamma$
- Firms: show
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports
- To isolate new policy motives assume:
 - **A1**: production subsidies $\tau_i = \frac{\varepsilon 1}{\varepsilon}$, $\tau_i^* = 1$ and no markup shocks \Rightarrow eliminate monopolistic distortion and the terms-of-trade externality
 - **A2**: payoffs of assets D_t^h are independent from monetary policies \Rightarrow monetary policy does not aim to complete asset markets

- Infinite-horizon model w/ continuum of SOEs (Gali-Monacelli'2005)
 - U.S. is symmetric except for DCP
- - demand for products, labor supply and risk-sharing
 - nested CES w/ macro elasticity heta, micro elasticity au, home bias $1-\gamma$
- Firms: show
 - CRS production from labor and intermediates
 - Rotemberg price setting: PCP in local market + DCP in exports
- To isolate new policy motives assume:
 - **A1**: production subsidies $\tau_i = \frac{\varepsilon 1}{\varepsilon}$, $\tau_i^* = 1$ and no markup shocks \Rightarrow *eliminate monopolistic distortion and the terms-of-trade externality*
 - **A2**: payoffs of assets D_t^h are independent from monetary policies
 - ⇒ monetary policy does not aim to complete asset markets
- - (a) is efficient from the perspective of individual economy,
 - (b) can be implemented under PCP by targeting $\pi_{iit} = 0$.

NON-U.S. MONETARY POLICY

Proposition (Non-U.S. policy)

Proposition (Non-U.S. policy)

- Optimal policy can be summarized with a simple "sufficient statistic"
 - invariant to parameters/details of the model

Proposition (Non-U.S. policy)

The optimal monetary policy in a non-U.S. economy stabilizes prices of domestic producers $\pi_{iit} = 0$. The resulting allocation is not efficient.

- Optimal policy can be summarized with a simple "sufficient statistic"
 - invariant to parameters/details of the model
- PPI vs. CPI: target prices that are sticky in local currency
- ▶ show

may include retail prices of imported goods

Proposition (Non-U.S. policy)

- Optimal policy can be summarized with a simple "sufficient statistic"
 - invariant to parameters/details of the model
- PPI vs. CPI: target prices that are sticky in local currency
- ▶ show

- may include retail prices of imported goods
- Optimal policy is time consistent

Proposition (Non-U.S. policy)

- Optimal policy can be summarized with a simple "sufficient statistic"
 - invariant to parameters/details of the model
- PPI vs. CPI: target prices that are sticky in local currency
- ▶ show

- may include retail prices of imported goods
- Optimal policy is time consistent
- Same optimal policy as under PCP despite inefficient outcome:

- PCP: given export prices, MP achieves optimal exports $Y_{it}^* = h_t(P_{iit}/\mathcal{E}_{it})$
- DCP: given export prices, MP cannot affect exports $Y_{it}^* = h_t(P_{it}^*)$

Proposition (Non-U.S. policy)

- Optimal policy can be summarized with a simple "sufficient statistic"
 - invariant to parameters/details of the model
- PPI vs. CPI: target prices that are sticky in local currency
- ▶ show

- may include retail prices of imported goods
- Optimal policy is time consistent
- Same optimal policy as under PCP despite inefficient outcome:

- PCP: given export prices, MP achieves optimal exports $Y_{it}^* = h_t(P_{iit}/\mathcal{E}_{it})$
- DCP: given export prices, MP cannot affect exports $Y_{it}^* = h_t(P_{it}^*)$
- Lemma: decentralized export prices are constrained efficient under DCP
- robust to Kimball demand, heterogenous firms, endogenous currency choice

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

$$i_{\mathit{USt}} \uparrow \Rightarrow \; \mathcal{E}_{\mathit{it}} \uparrow \Rightarrow \; \left\{ \begin{array}{c} P_{\mathit{it}} \uparrow \Rightarrow \{ \mathsf{intermediates} \} \Rightarrow \; \mathit{MC}_{\mathit{it}} \uparrow \Rightarrow \; i_{\mathit{it}} \uparrow \end{array} \right.$$

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

$$i_{USt} \uparrow \Rightarrow \mathcal{E}_{it} \uparrow \Rightarrow \begin{cases} P_{it} \uparrow \Rightarrow \{\text{intermediates}\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \\ Y_{it}^* \downarrow \Rightarrow \{\text{convex costs}\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \end{cases}$$

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

$$i_{USt} \uparrow \Rightarrow \mathcal{E}_{it} \uparrow \Rightarrow \begin{cases} P_{it} \uparrow \Rightarrow \{\text{intermediates}\} \Rightarrow MC_{it} \uparrow \Rightarrow i_{it} \uparrow \\ Y_{it}^* \downarrow \Rightarrow \{\text{convex costs}\} \Rightarrow MC_{it} \downarrow \Rightarrow i_{it} \downarrow \end{cases}$$

- i) Global Monetary Cycle: all countries respond to U.S. shocks
 - higher pass-through in countries with more DCP ► Zhang'201

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

• Corollary: The optimal policy is generically outward-looking

$$i_{\mathit{USt}} \uparrow \Rightarrow \ \mathcal{E}_{\mathit{it}} \uparrow \Rightarrow \ \left\{ \begin{array}{l} P_{\mathit{it}} \uparrow \Rightarrow \{ \mathsf{intermediates} \} \Rightarrow \ \mathit{MC}_{\mathit{it}} \uparrow \Rightarrow \ \mathit{i}_{\mathit{it}} \uparrow \ \Rightarrow \ \mathcal{E}_{\mathit{it}} \downarrow \ \\ Y_{\mathit{it}}^* \downarrow \Rightarrow \{ \mathsf{convex} \ \mathsf{costs} \} \Rightarrow \ \mathit{MC}_{\mathit{it}} \downarrow \Rightarrow \ \mathit{i}_{\mathit{it}} \downarrow \ \Rightarrow \ \mathcal{E}_{\mathit{it}} \uparrow \ \end{array} \right.$$

- i) Global Monetary Cycle: all countries respond to U.S. shocks
 - higher pass-through in countries with more DCP
- ii) partial peg to the dollar if the intermediate channel dominates
 - DCP contributes to the "fear of floating"

► IRR'2018

• Does targeting $\pi_{iit} = 0$ means the optimal policy is *inward-looking*?

$$1 = MC_{it} = \frac{G(W_{it}, P_{it})}{A_{it}}$$

$$i_{\mathit{USt}} \uparrow \Rightarrow \ \mathcal{E}_{\mathit{it}} \uparrow \Rightarrow \ \left\{ \begin{array}{l} P_{\mathit{it}} \uparrow \Rightarrow \{ \mathsf{intermediates} \} \Rightarrow \ \mathit{MC}_{\mathit{it}} \uparrow \Rightarrow \ \mathit{i}_{\mathit{it}} \uparrow \ \Rightarrow \ \mathcal{E}_{\mathit{it}} \downarrow \ \\ Y_{\mathit{it}}^* \downarrow \Rightarrow \{ \mathsf{convex} \ \mathsf{costs} \} \Rightarrow \ \mathit{MC}_{\mathit{it}} \downarrow \Rightarrow \ \mathit{i}_{\mathit{it}} \downarrow \ \Rightarrow \ \mathcal{E}_{\mathit{it}} \uparrow \ \end{array} \right.$$

- i) Global Monetary Cycle: all countries respond to U.S. shocks
 - higher pass-through in countries with more DCP → Zhang'2018
- ii) partial peg to the dollar if the intermediate channel dominates
 - DCP contributes to the "fear of floating" ► IRR'2018
- iii) Trilemma: trade-off is worse under DCP, but fixed ER is suboptimal
 - cf. Rey'2013, Gourinchas'2018, Kalemli-Ozcan'2019

ADDITIONAL FISCAL INSTRUMENTS

• Can capital controls insulate from U.S. spillovers?

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"
- Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"
- Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

• Optimal subsidy from Farhi-Werning'2016:

$$\tau_{it}^{h} = P_{iit} C_{l,iit} \, \overline{\tau}_{iit} + \mathcal{E}_{it} P_{it}^{*} C_{l,it}^{*} \, \overline{\tau}_{it}^{*}$$

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"
- Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

• Optimal subsidy from Farhi-Werning'2016:

$$\tau_{it}^{h} = P_{iit} C_{I,iit} \underbrace{\overline{\tau}_{iit}}_{=0} + \mathcal{E}_{it} P_{it}^{*} C_{I,iit}^{*} \underbrace{\overline{\tau}_{it}^{*}}_{\neq 0}$$

Capital Controls

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

• Optimal subsidy from Farhi-Werning'2016:

$$\tau_{it}^{h} = P_{iit} \underbrace{C_{I,iit}}_{>0} \underbrace{\overline{\tau}_{iit}}_{=0} + \mathcal{E}_{it} P_{it}^{*} \underbrace{C_{I,it}^{*}}_{=0} \underbrace{\overline{\tau}_{it}^{*}}_{\neq 0}$$

Capital Controls

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"
- Augment monetary policy with state-contingent capital controls

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

• Optimal subsidy from Farhi-Werning'2016:

$$\tau_{it}^{h} = P_{iit} \underbrace{C_{I,iit}}_{>0} \underbrace{\overline{\tau}_{iit}}_{=0} + \mathcal{E}_{it} P_{it}^{*} \underbrace{C_{I,it}^{*}}_{=0} \underbrace{\overline{\tau}_{it}^{*}}_{\neq 0}$$

⇒ capital controls are not a panacea against all kinds of foreign spillovers

Capital Controls

- Can capital controls insulate from U.S. spillovers?
 - Blanchard'2017: "[the use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects"
 - Farhi-Werning'2016: if MP cannot achieve the first best under sticky prices, the risk sharing is generically inefficient due to "AD externality"
- Augment monetary policy with state-contingent capital controls show

Proposition (Capital controls)

Given the optimal monetary policy, capital controls do not insulate other economies from U.S. spillovers and are not used by the planner.

• Optimal subsidy from Farhi-Werning'2016:

$$\tau_{it}^{h} = P_{iit} \underbrace{C_{I,iit}}_{>0} \underbrace{\overline{\tau}_{iit}}_{=0} + \mathcal{E}_{it} P_{it}^{*} \underbrace{C_{I,it}^{*}}_{=0} \underbrace{\overline{\tau}_{it}^{*}}_{\neq 0}$$

 Corollary: The optimal cooperative capital controls are generically non-zero and target economies that import depressed/overheated goods

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation (Adao-Correia-Teles'2009, Farhi-Gopinath-Itskhoki'2014)
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi'2018)

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation (Adao-Correia-Teles'2009, Farhi-Gopinath-Itskhoki'2014)
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi'2018)
- Lemma: The non-cooperative first-best allocation can be implemented with
 - monetary policy stabilizing P_{iit}
 - 2 export tax τ_{it}^{E} stabilizing $\tau_{it}^{E} \mathcal{E}_{it} P_{it}^{*}$
 - **3** production subsidy to exporters τ_{it}^* stabilizing P_{it}^*

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation (Adao-Correia-Teles'2009, Farhi-Gopinath-Itskhoki'2014)
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi'2018)
- Lemma: The non-cooperative first-best allocation can be implemented with
 - **1** monetary policy stabilizing $P_{iit} \Rightarrow domestic margin$
 - 2 export tax τ_{it}^E stabilizing $\tau_{it}^E \mathcal{E}_{it} P_{it}^* \Rightarrow expenditure switching$
 - **3** production subsidy to exporters τ_{it}^* stabilizing $P_{it}^* \Rightarrow price-adj$. costs

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation (Adao-Correia-Teles'2009, Farhi-Gopinath-Itskhoki'2014)
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi'2018)
- Lemma: The non-cooperative first-best allocation can be implemented with
 - **1** monetary policy stabilizing $P_{iit} \Rightarrow domestic margin$
 - **2** export tax τ_{it}^{E} stabilizing $\tau_{it}^{E} \mathcal{E}_{it} P_{it}^{*} \Rightarrow expenditure switching$
 - **3** production subsidy to exporters τ_{it}^* stabilizing $P_{it}^* \Rightarrow price-adj$. costs
- The optimal policy is "robust" in terms of targets (cf. FGI'2014)
 - invariant to parameters/details of the model

- Can trade policy overcome limitations of MP and capital controls?
 - fiscal policy can replicate effects of monetary depreciation (Adao-Correia-Teles'2009, Farhi-Gopinath-Itskhoki'2014)
 - fiscal policy can restore efficient allocation under LCP (Chen-Devereux-Xu-Shi'2018)
- Lemma: The non-cooperative first-best allocation can be implemented with
 - **1** monetary policy stabilizing $P_{iit} \Rightarrow domestic margin$
 - 2 export tax τ_{it}^E stabilizing $\tau_{it}^E \mathcal{E}_{it} P_{it}^* \Rightarrow expenditure switching$
 - **3** production subsidy to exporters τ_{it}^* stabilizing $P_{it}^* \Rightarrow price-adj$. costs
- The optimal policy is "robust" in terms of targets (cf. FGI'2014)
 - invariant to parameters/details of the model
- Can be implemented with alternative instruments. . .
 - but export tax is crucial as the Lerner symmetry does not hold (Barbiero-Farhi-Gopinath-Itskhoki'2019)

OPTIMAL U.S. POLICY

Proposition (U.S. policy)

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

Price targeting: domestic demand and expenditure switching for exports

Proposition (U.S. policy)

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

- Price targeting: domestic demand and expenditure switching for exports
- 2 ToT manipulation: markups of world exporters depend on U.S. policy

Proposition (U.S. policy)

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

- Price targeting: domestic demand and expenditure switching for exports
- ToT manipulation: markups of world exporters depend on U.S. policy
- Oynamic ToT manipulation: borrow cheaply and save at higher rate
 - as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 - if $\epsilon < 0$, the U.S. overstimulates the economy when $nx_{it} < 0$

Proposition (U.S. policy)

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

- 1 Price targeting: domestic demand and expenditure switching for exports
- ToT manipulation: markups of world exporters depend on U.S. policy
- Oynamic ToT manipulation: borrow cheaply and save at higher rate
 - as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 - if ϵ < 0, the U.S. overstimulates the economy when nx_{it} < 0
- General case: the U.S. can benefit or lose from DCP relative to RoW

Proposition (U.S. policy)

Assume fully sticky prices and complete markets. Then optimal U.S. monetary policy rule balances three motives:

$$\Gamma \cdot p_{iit} + \gamma \Xi \cdot \int p_{jt}^* \mathrm{d}j + \gamma \epsilon \cdot n x_{it} = 0.$$

- Price targeting: domestic demand and expenditure switching for exports
- 2 ToT manipulation: markups of world exporters depend on U.S. policy
- Oynamic ToT manipulation: borrow cheaply and save at higher rate
 - as if U.S. economy is large (cf. Costinot-Lorenzoni-Werning'2014)
 - if ϵ < 0, the U.S. overstimulates the economy when nx_{it} < 0
- General case: the U.S. can benefit or lose from DCP relative to RoW
- $\bullet \ \, \mathsf{Special} \ \, \mathsf{case} \colon \mathsf{complete} \ \, \mathsf{markets} + \mathsf{log-linear} \ \, \mathsf{preferences} + \mathsf{no} \ \, \mathsf{intermediates}$

Proposition (Welfare)

In the special case, if countries' openness γ is sufficiently low, then the welfare of the U.S. under DCP is higher relative to other countries.

- Global planner maximizes total welfare across countries
 - *U.S. welfare* is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

- Global planner maximizes total welfare across countries
 - U.S. welfare is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau_i^* = \tau_i = \frac{\varepsilon - 1}{\varepsilon}$. Then the optimal cooperative policy implements

$$\pi_{iit} = 0, \ \forall i \neq \textit{U.S.} \quad \text{ and } \quad \int \varpi_{it} \cdot \frac{P_{iit}}{\mathcal{E}_{it}P_{it}^*} \mathrm{d}i = 1, \quad \varpi_{it} \equiv \left(\frac{P_{it}^*}{P_t^*}\right)^{\varepsilon - 1}.$$

- Global planner maximizes total welfare across countries
 - U.S. welfare is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau_i^* = \tau_i = \frac{\varepsilon - 1}{\varepsilon}$. Then the optimal cooperative policy implements

$$\pi_{iit} = 0, \ \forall i \neq \textit{U.S.} \qquad \text{and} \qquad \int \varpi_{it} \cdot \frac{P_{iit}}{\mathcal{E}_{it}P_{it}^*} \mathrm{d}i = 1, \quad \varpi_{it} \equiv \left(\frac{P_{it}^*}{P_t^*}\right)^{\varepsilon - 1}.$$

- Monetary cooperation harms the U.S. and benefits the RoW:
 - country-specific shocks ⇒ conflict of interests, no first-best
 - common shocks \Rightarrow cooperation = non-cooperation = first-best

- Global planner maximizes total welfare across countries
 - U.S. welfare is a trivial fraction of global welfare
 - U.S. monetary policy has global effects

Proposition (Cooperative policy)

Assume complete asset markets and $\tau_i^* = \tau_i = \frac{\varepsilon - 1}{\varepsilon}$. Then the optimal cooperative policy implements

$$\pi_{iit} = 0, \ \forall i \neq \textit{U.S.} \qquad \text{and} \qquad \int \varpi_{it} \cdot \frac{P_{iit}}{\mathcal{E}_{it}P_{it}^*} \mathrm{d}i = 1, \quad \varpi_{it} \equiv \left(\frac{P_{it}^*}{P_t^*}\right)^{\varepsilon - 1}.$$

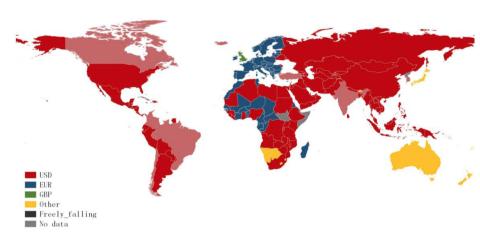
- Monetary cooperation harms the U.S. and benefits the RoW:
 - country-specific shocks \Rightarrow conflict of interests, no first-best
 - common shocks \Rightarrow cooperation = non-cooperation = first-best
- Corollary: forming currency union can benefit its members

Conclusion

- Optimality of Inflation Targeting
 - robust and simple non-U.S. policy despite inefficient ToT & output gap
- @ Global Monetary Cycle
 - "fear of floating" and partial peg to the dollar
- No Case for Capital Controls
 - inefficient against U.S. spillovers despite AD externalities
- Motives of U.S. Policy
 - optimal to partially internalize spillovers on the RoW
- **5** Benefits from Cooperation
 - currency union as a substitute for unsustainable global cooperation

APPENDIX

Dollar as an Anchor Currency

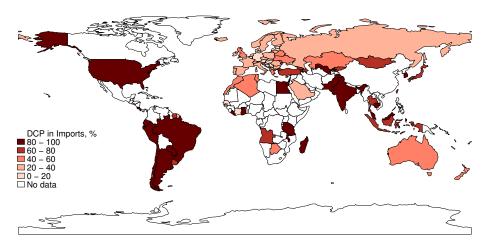


Source: Ilzetzki, Reinhart and Rogoff (2017)

▶ Motivation

→ GMC

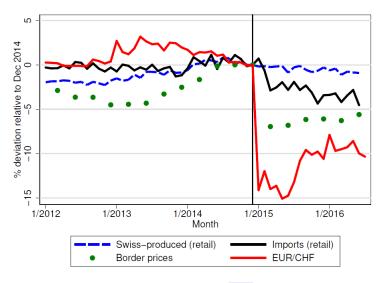
DCP in Imports



Source: Boz et al. (2020)

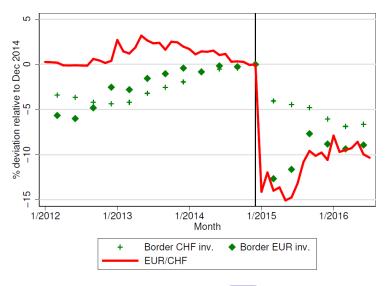
▶ back

Pass-Through into Border and Retail Prices



Source: Auer, Burstein, and Lein (2018)

Pass-Through into Border and Retail Prices



Source: Auer, Burstein, and Lein (2018)

Households

• Preferences:

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} U(C_{it}, N_{it}, \xi_{it})$$

Consumption aggregator:

$$C_{it} = \left[(1 - \gamma)^{\frac{1}{\theta}} C_{iit}^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} C_{it}^{*\frac{\theta - 1}{\theta}} \right]^{\frac{\theta}{\theta - 1}}, \quad C_{it}^{*} = \left(\int C_{jit}^{\frac{\varepsilon - 1}{\varepsilon}} dj \right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

- macro elasticity heta vs. micro elasticity arepsilon>1
- Budget constraint:

$$P_{it}C_{it} + \mathcal{E}_{it} \sum_{h \in H_{it}} \mathcal{Q}_t^h B_{it+1}^h = W_{it}N_{it} + \Pi_{it} + \mathcal{E}_{it} \sum_{h \in H_{it-1}} (\mathcal{Q}_t^h + D_t^h) B_{it}^h + \mathcal{E}_{it} \psi_{it}$$

- \mathcal{E}_{it} is the nominal exchange rate against the dollar
- *H_{it}* is an arbitrary set of traded assets
- ψ_{it} is a commodity/ToT/wealth/financial shock

Firms

CRS technology:

$$Y_{it} = \underset{it}{A_{it}} F(L_{it}, X_{it})$$

- for simplicity, same bundle of intermediates X_{it} as in consumption
- Rotemberg price setting:
 - 1 Local currency in domestic market:

$$\max_{\{P_t\}} \ \mathbb{E} \sum_{t=0}^{\infty} \ \Theta_{it} \left[\left(P_t - \frac{\tau_i}{P_{iit}} M C_{it} \right) \left(\frac{P_t}{P_{iit}} \right)^{-\varepsilon} \ Y_{iit} - (1 - \gamma) \frac{\varphi}{2} \left(\frac{P_t}{P_{t-1}} - 1 \right)^2 W_{it} \right]$$

Oollars in foreign markets:

$$\max_{\{P_t\}} \mathbb{E} \sum_{t=0}^{\infty} \Theta_{it} \left[\left(\mathcal{E}_{it} P_t - \frac{\tau_i^* M C_{it}}{P_{it}^*} \right) \left(\frac{P_t}{P_{it}^*} \right)^{-\varepsilon} Y_{it}^* - \gamma \frac{\varphi}{2} \left(\frac{P_t}{P_{t-1}} - 1 \right)^2 W_{it} \right]$$

- $\Theta_{it} \equiv \beta^t \frac{U_{Cit}}{P_{it}}$ is the nominal SDF
- $Y_{iit} \equiv C_{iit} + X_{iit}$ and $Y_{it}^* \equiv \int (C_{ijt} + X_{ijt}) dj$ are demand shifters
- τ_i and τ_i^* are time-invariant subsidies to domestic firms and exporters

Market Clearing

Goods market:

$$A_{it}F(L_{it},X_{it}) = (1-\gamma)\left(\frac{P_{iit}}{P_{it}}\right)^{-\theta}(C_{it}+X_{it}) + \gamma\left(\frac{P_{it}^*}{P_t^*}\right)^{-\varepsilon}\int\left(\frac{\mathcal{E}_{jt}P_t^*}{P_{jt}}\right)^{-\theta}(C_{jt}+X_{jt})\,\mathrm{d}j$$

• Labor market:

$$N_{it} = L_{it} + \frac{\varphi}{2}(1-\gamma)\pi_{iit}^2 + \frac{\varphi}{2}\gamma\pi_{it}^{*2}$$

Asset markets:

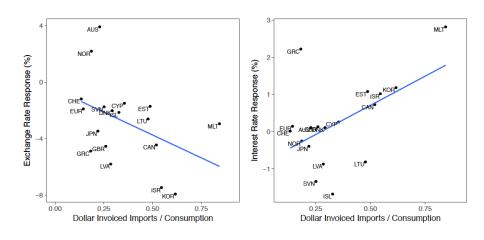
$$\int B_{it+1}^h \mathrm{d}i = 0, \ \forall h \in H_t, \qquad \mathcal{B}_{it}^i = 0$$

• Country's budget constraint:

$$\begin{split} &\sum_{h \in \mathcal{H}_t} \mathcal{Q}_t^h B_{it+1}^h - \sum_{h \in \mathcal{H}_{t-1}} (\mathcal{Q}_t^h + D_t^h) B_{it}^h \\ &= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{it}} \right)^{-\theta} (C_{jt} + X_{jt}) \, \mathrm{d}j - P_t^* \left(\frac{\mathcal{E}_{it} P_t^*}{P_{it}} \right)^{-\theta} (C_{it} + X_{it}) \right] + \psi_{it}. \end{split}$$

DCP vs. Response to Fed's Shocks

Source: Zhang (2018)



Comparison to the Literature

	DSX	CP	GT	CDGG	EM
Environment:					
# of countries	two		three	SOE	continuum
preferences	log-linear			•	general
intermediates	no				yes
asset markets	complete				arbitrary
prices	fully sticky			Calvo	Rtmberg/Calvo
terms-of-trade	exogenous to MP				endogenous
currency choice	rationalized exogenous				endogenous
Non-U.S. policy:					
optimal target	price stabilization				
allocation	inefficient				
implementation	inward-looking				outward-looking
exchange rates	floating				partial peg
capital contols	_				inefficient
trade policy	_			efficient	
U.S. policy motives:					
import prices	yes			_	yes
dynamic ToT	no			_	yes
welfare effects	negative	_	ambiguous	_	ambiguous
cooperative policy	yes			_	yes
Dancier, Davidson, Ch. R. V. (2007), Caractti R. Daconti (2007), Caldhaus R. Tilla (2000)					

Papers: Devereux, Shi & Xu (2007), Corsetti & Pesenti (2007), Goldberg & Tille (2009), Casas, Diez, Gopinath & Gourinchas (2018), Egorov & Mukhin (2019)

Non-U.S. Planner's Problem

$$\max_{\{\mathcal{E}_{it}, B_{it}^{h}, C_{it}, L_{it}, \pi_{iit}, \pi_{it}^{*}\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t} U(C_{it}, L_{it} + \frac{\varphi}{2}(1 - \gamma)\pi_{iit}^{2} + \frac{\varphi}{2}\gamma\pi_{it}^{*2}, \xi_{it})$$

$$(\mathsf{RS}) \quad \mathbb{E}_t \Theta_{it,t+1} \frac{\mathcal{E}_{it+1}}{\mathcal{E}_{it}} \frac{\mathcal{Q}_{t+1}^h + \mathcal{D}_{t+1}^h}{\mathcal{Q}_t^h} = 1$$

$$\sum_{l=1}^{h} \mathcal{Q}_{t}^{h} B_{it+1}^{h} - \sum_{l=1}^{h} (\mathcal{Q}_{t}^{h} + D_{t}^{h}) E$$

(BC)
$$\sum_{h \in \mathcal{H}_t} \mathcal{Q}_t^h B_{it+1}^h - \sum_{h \in \mathcal{H}_{t-1}} (\mathcal{Q}_t^h + D_t^h) B_{it}^h$$

$$\begin{aligned}
& \stackrel{h \in H_t}{=} & \stackrel{h \in H_{t-1}}{=} \\
&= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_i^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_i} \right)^{-\theta} \right]
\end{aligned}$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \right]$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_{it}^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_{t}^*}{P_{jt}} \right)^{-\theta} \right]$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \right]$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \left(C_{jt} + X_{jt} \right) dj - P_t^* \left(\frac{\mathcal{E}_{it} P_t^*}{P_{it}} \right)^{-\theta} \left(C_{it} + X_{it} \right) \right] + \psi_{it}$$

$$= \frac{1}{2} \left(\frac{1}{P_t} \left(\frac{P_{it}}{P_t^*} \right) \right) \left(\frac{P_{ijt}}{P_{jt}} \right) \left(\frac{P_{ijt}}{P_{ijt}} \right) = \frac{1}{2} \left(\frac{P_{ijt}}{P_{ijt}} \right) \left(\frac{P_{ijt}}{P_{ijt}} \right) = \frac{1}{2} \left(\frac{P_{ijt}}{P_{ijt}} \right) = \frac{1}{2}$$

$$-\frac{\varepsilon \tau_i}{MC_{it}}$$

$$\left(\frac{P_{it}^*}{P_t^*}\right)^{-\varepsilon} \int \left(\frac{S_t^*}{S_t^*}\right)^{-\varepsilon} \int \left(\frac{S_t^*}{S_t^*$$

$$\int \left(\frac{\mathcal{E}_j}{I}\right)$$

$$\int \left(\frac{\mathcal{E}_{jt}P_t^*}{P_{jt}}\right)^{-\theta} \left(C_{jt} + X_j\right)^{-\theta}$$

$$\left(\frac{c_{jt}r_t}{P_{jt}}\right) \quad \left(C_{jt} + X_{j}\right)$$

$$iit+1 + 1) W_{it+1}$$

$$(\text{PC}) \quad \pi_{iit} \left(\pi_{iit} + 1 \right) W_{it} = -\kappa \left(P_{iit} - \frac{\varepsilon \tau_i}{\varepsilon - 1} M C_{it} \right) \frac{Y_{iit}}{1 - \gamma} + \beta \mathbb{E}_t \Theta_{it, t+1} \pi_{iit+1} \left(\pi_{iit+1} + 1 \right) W_{it+1}$$

$$(PC) \quad \pi_{it}^* \left(\pi_{it}^* + 1 \right) W_{it} = -\kappa \left(\mathcal{E}_{it} P_{it}^* - \frac{\varepsilon \tau_i^*}{\varepsilon - 1} M C_{it} \right) \frac{Y_{it}^*}{\gamma} + \beta \mathbb{E}_t \Theta_{it,t+1} \pi_{it+1}^* \left(\pi_{it+1}^* + 1 \right) W_{it+1}$$

$$\text{where } \frac{X_{it}}{L_{it}} = g \left(\frac{-U_{Nit}}{U_{Cit}} \right), \ \Theta_{it,t+\tau} = \beta^{\tau} \frac{U_{Cit+\tau} P_{it}}{U_{Cit} P_{it+\tau}}, \ \frac{M C_{it}}{P_{it}} = \frac{h \left(\frac{-U_{Nit}}{U_{Cit}} \right)}{A_{it}}, \ Y_{it}^* \equiv \int \left(C_{ijt} + X_{ijt} \right) \mathrm{d}j$$

$$(MC) \quad A_{it}F(L_{it},X_{it}) = (1-\gamma)\left(\frac{P_{iit}}{P_{it}}\right)^{-\theta}\left(C_{it}+X_{it}\right) + \gamma\left(\frac{P_{it}^*}{P_t^*}\right)^{-\varepsilon}\int\left(\frac{\mathcal{E}_{jt}P_t^*}{P_{jt}}\right)^{-\theta}\left(C_{jt}+X_{jt}\right)\mathrm{d}j$$

Planner's Problem w/ Capital Controls

$$\max_{\{\mathcal{E}_{it}, \tau_{it+1}^h, \mathcal{B}_{it}^h, C_{it}, L_{it}, \pi_{iit}, \pi_{it}^*\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^t U(C_{it}, L_{it} + \frac{\varphi}{2}(1 - \gamma)\pi_{iit}^2 + \frac{\varphi}{2}\gamma\pi_{it}^{*2}, \xi_{it})$$

$$(\mathsf{RS}) \quad \mathbb{E}_t \Theta_{it,t+1} \frac{\mathcal{E}_{it+1}}{\mathcal{E}_{it}} \frac{\mathcal{Q}_{t+1}^h + D_{t+1}^h}{(1 - \tau_{t+1}^h) \mathcal{Q}_t^h} = 1$$

(BC)
$$\sum_{h \in \mathcal{H}_t} \mathcal{Q}_t^h B_{it+1}^h - \sum_{h \in \mathcal{H}_{t-1}} (\mathcal{Q}_t^h + D_t^h) B_{it}^h$$

$$(\exists C) \qquad \underbrace{\bigcup_{h \in H_t} \mathcal{Q}_t \, b_{it+1}}_{h \in H_{t-1}} = \underbrace{\bigcup_{h \in H_{t-1}} (\mathcal{Q}_t + \mathcal{D}_t)^{T}}_{h \in H_{t-1}}$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \right]$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \right]$$

$$= \gamma \left[P_{it}^* \left(\frac{P_{it}^*}{P_t^*} \right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \left(C_{jt} + X_{jt} \right) \mathrm{d}j - P_t^* \left(\frac{\mathcal{E}_{it} P_t^*}{P_{it}} \right)^{-\theta} \left(C_{it} + X_{it} \right) \right] + \psi_{it}$$

$$\int_{-\varepsilon}^{-\varepsilon} \int_{-\varepsilon}^{\varepsilon} \left(\frac{\mathcal{E}_{jt} P_t^*}{P_{jt}} \right)^{-\theta} \left(e^{-\varepsilon} \right)^{-\theta}$$

$$\left(\frac{e^*}{t}\right)^{-\theta} \left(C_i\right)$$

$$^{ heta}\left(C_{jt}+X_{jt}
ight) \mathrm{d}j-% \mathrm{d}t$$

 $(\mathsf{PC}) \quad \pi_{it}^* \left(\pi_{it}^* + 1 \right) W_{it} = -\kappa \left(\mathcal{E}_{it} P_{it}^* - \frac{\varepsilon \tau_i^*}{\varepsilon - 1} \mathsf{MC}_{it} \right) \frac{Y_{it}^*}{\gamma} + \beta \mathbb{E}_t \Theta_{it,t+1} \pi_{it+1}^* \left(\pi_{it+1}^* + 1 \right) W_{it+1}$

where $\frac{X_{it}}{L_{it}} = g\left(\frac{-U_{Nit}}{U_{Cit}}\right)$, $\Theta_{it,t+\tau} = \beta^{\tau} \frac{U_{Cit+\tau}P_{it}}{U_{Cit}P_{it+\tau}}$, $\frac{MC_{it}}{P_{it}} = \frac{h\left(\frac{-U_{Nit}}{U_{Cit}}\right)}{A_{it}}$, $Y_{it}^* \equiv \int \left(C_{ijt} + X_{ijt}\right) \mathrm{d}j$

$$(t + X_{jt}) dj - t$$

$$X_{jt}$$
) d $j-F$

$$\mathrm{d}j - P_t^*$$
 (

$$\overline{P_{it}}$$

$$\int \left(\frac{\varepsilon}{2}\right)^{n}$$

$$\int \left(\frac{\mathcal{E}}{2}\right)^{-1}$$

$$\int \frac{\mathcal{E}_{jt}P_t^*}{2}$$

$$\left(C_{it} + X_{it} \right) + \left(\frac{\mathcal{E}_{jt} P_t^*}{C_{it}} \right)^{-\theta}$$

$$(C_{it})$$
 + ψ_{it}

$$(MC) \quad A_{it}F(L_{it}, X_{it}) = (1 - \gamma) \left(\frac{P_{iit}}{P_{it}}\right)^{-\theta} \left(C_{it} + X_{it}\right) + \gamma \left(\frac{P_{it}^*}{P_{it}^*}\right)^{-\varepsilon} \int \left(\frac{\mathcal{E}_{jt}P_t^*}{P_{jt}}\right)^{-\theta} \left(C_{jt} + X_{jt}\right) dj$$

$$(PC) \quad \pi_{iit} \left(\pi_{iit} + 1\right) W_{it} = -\kappa \left(P_{iit} - \frac{\varepsilon \tau_i}{\varepsilon - 1} M C_{it}\right) \frac{Y_{iit}}{1 - \gamma} + \beta \mathbb{E}_t \Theta_{it, t+1} \pi_{iit+1} \left(\pi_{iit+1} + 1\right) W_{it+1}$$

Domestic Dollarization

- EMs often face dollarization of domestic prices (Drenik-Perez'18)
- Extend model to have both PCP and DCP in home market

Domestic Dollarization

- EMs often face dollarization of domestic prices (Drenik-Perez'18)
- Extend model to have both PCP and DCP in home market

Proposition (Domestic dollarization)

The optimal policy stabilizes local-currency prices $\pi_{iit} = 0$ and imposes capital controls and export tariffs $\tau^c_{it} \propto \mathcal{E}_{it} P^*_{iit} - P_{iit}$.

Domestic Dollarization

- EMs often face dollarization of domestic prices (Drenik-Perez'18)
- Extend model to have both PCP and DCP in home market

Proposition (Domestic dollarization)

The optimal policy stabilizes local-currency prices $\pi_{iit} = 0$ and imposes capital controls and export tariffs $\tau^c_{it} \propto \mathcal{E}_{it} P^*_{iit} - P_{iit}$.

- Optimal monetary target:
 - currency of invoicing \gg country of origin
- Capital controls:
 - AD externality
 - subsidize assets that pay in states with $\mathcal{E}_{it}P_{iit}^*>P_{iit}$
- Export tariffs:
 - AD externality
 - boost exports in states with $\mathcal{E}_{it}P_{iit}^* > P_{iit}$

Equilibrium

• Ramsey approach: nominal interest rates R_{it} as monetary instrument

- ullet Ramsey approach: nominal interest rates R_{it} as monetary instrument
- **Definition**: solve for a SPNE of the following game
 - countries choose domestic inflation π_{iit}
 - the U.S. moves before other countries
 - full commitment

- ullet Ramsey approach: nominal interest rates R_{it} as monetary instrument
- **Definition**: solve for a SPNE of the following game
 - countries choose domestic inflation $\pi_{iit} \to \text{can choose } C_{it}, L_{it}, Y_{it}, \pi_{it}^*$
 - the U.S. moves before other countries \rightarrow simultaneous-move game
 - -- full commitment \rightarrow binds only for the U.S.
- Lemma 1: the same equilibrium in a large set of games

- ullet Ramsey approach: nominal interest rates R_{it} as monetary instrument
- **Definition**: solve for a SPNE of the following game
 - countries choose domestic inflation $\pi_{iit} o$ can choose $C_{it}, L_{it}, Y_{it}, \pi_{it}^*$
 - the U.S. moves before other countries \rightarrow simultaneous-move game
 - full commitment \rightarrow binds only for the U.S.
- Lemma 1: the same equilibrium in a large set of games
- To isolate new policy motives assume:
 - **A1**: production subsidies $\tau_i = \frac{\varepsilon 1}{\varepsilon}$, $\tau_i^* = 1$ and no markup shocks \Rightarrow eliminate monopolistic distortion and the terms-of-trade externality
 - A2: payoffs of assets D_t^h are independent from monetary policies \Rightarrow monetary policy does not aim to complete asset markets

- Ramsey approach: nominal interest rates R_{it} as monetary instrument
- **Definition**: solve for a SPNE of the following game
 - countries choose domestic inflation $\pi_{iit} o$ can choose $C_{it}, L_{it}, Y_{it}, \pi_{it}^*$
 - the U.S. moves before other countries \rightarrow simultaneous-move game
 - full commitment \rightarrow binds only for the U.S.
- Lemma 1: the same equilibrium in a large set of games
- To isolate new policy motives assume:
 - **A1**: production subsidies $\tau_i = \frac{\varepsilon 1}{\varepsilon}$, $\tau_i^* = 1$ and no markup shocks \Rightarrow eliminate monopolistic distortion and the terms-of-trade externality
 - A2: payoffs of assets D_t^h are independent from monetary policies \Rightarrow monetary policy does not aim to complete asset markets
- **Lemma 2**: the flexible-price equilibrium $\varphi = 0$
 - (a) is efficient from the perspective of individual country,
 - (b) can be implemented under PCP by targeting $\pi_{iit} = 0$.

- Consider a simplified setup:
 - one-period model
 - discretionary policy
 - no intermediates

• Define local and external wedges :

$$ar{ au}_{ii} \equiv 1 + rac{1}{A_i} rac{U_{N_i}}{U_{C_{ii}}}, \qquad ar{ au}_i^* \equiv 1 + rac{arepsilon_i}{arepsilon_i - 1} rac{S_i}{A_i} rac{U_{N_i}}{U_{C_i^*}}$$

Define local and external wedges :

$$ar{ au}_{ii} \equiv 1 + rac{1}{A_i} rac{U_{N_i}}{U_{C_{ii}}}, \qquad ar{ au}_i^* \equiv 1 + rac{arepsilon_i}{arepsilon_i - 1} rac{S_i}{A_i} rac{U_{N_i}}{U_{C_i^*}}$$

- **Observation 1**: given P_i^* , MP has no effect on exports
 - distinguishes DCP from PCP

Define local and external wedges :

$$ar{ au}_{ii} \equiv 1 + rac{1}{A_i} rac{U_{N_i}}{U_{C_{ii}}}, \qquad ar{ au}_i^* \equiv 1 + rac{arepsilon_i}{arepsilon_i - 1} rac{S_i}{A_i} rac{U_{N_i}}{U_{C_i^*}}$$

- **Observation 1**: given P_i^* , MP has no effect on exports
- **Observation 2**: given $\bar{\tau}_{ii} = 0$, P_i^* is constrained efficient
 - relaxed planner's problem:

$$\max_{C_{ii}, C_i^*, N_i, S_i} U(C_{ii}, C_i^*, N_i)$$
s.t. $A_i N_i = C_{ii} + h(S_i^{-1})C^* + A_i \pi(S_i^{-1})$

$$C_i^* = S_i^{-1} h(S_i^{-1})C^* + \sum_h D^h B_i^h + \psi_i$$

— optimal export price coincides with the decentralized one:

$$S_i^{-1} = \underset{S^{-1}}{\operatorname{argmax}} \left[\mathcal{E}_i S^{-1} - \frac{W_i}{A_i} \right] h(S^{-1}) C^* - \pi(S^{-1}) W_i$$

- Optimal policy is robust to several extensions of the model:
 - Kimball demand and pricing-to-market
 - different technologies of local firms and exporters
 - Calvo friction and menu costs

- Optimal policy is robust to several extensions of the model:
 - Kimball demand and pricing-to-market
 - different technologies of local firms and exporters
 - Calvo friction and menu costs
- Counterexample: externalities across exporters

$$Y_{it}^*(\omega) = h_t(P_{it}^*(\omega))$$

- Optimal policy is robust to several extensions of the model:
 - Kimball demand and pricing-to-market
 - different technologies of local firms and exporters
 - Calvo friction and menu costs
- Counterexample: externalities across exporters

$$Y_{it}^*(\omega) = h_t(P_{it}^*(\omega), P_{it}^*) \stackrel{\text{e.g.}}{=} \left(\frac{P_{it}^*(\omega)}{P_{it}^*}\right)^{-\varepsilon} \left(\frac{P_{it}^*}{P_t^*}\right)^{-\rho} D_t^*$$

- Optimal policy is robust to several extensions of the model:
 - Kimball demand and pricing-to-market
 - different technologies of local firms and exporters
 - Calvo friction and menu costs
- Counterexample: externalities across exporters

$$Y_{it}^*(\omega) = h_t(P_{it}^*(\omega), P_{it}^*) \stackrel{\text{e.g.}}{=} \left(\frac{P_{it}^*(\omega)}{P_{it}^*}\right)^{-\varepsilon} \left(\frac{P_{it}^*}{P_t^*}\right)^{-\rho} D_t^*$$

- Robust to endogenous firms' currency choice
 - exporters use foreign intermediates and do pricing-to-market
 - strong complementarities \Rightarrow exporters coordinate on DCP (Mukhin'2018)