
1

Documentation of the Bank of Israel XBRL
taxonomy
Abstract

This document describes and explains the architecture of the public consultation version of the Bank of
Israel (BoI) XBRL taxonomy. In particular, it explains the semantics and syntax used to express the
information requirements of the data point model in XBRL format, and presents modularization of the
taxonomy folder and files, naming conventions, and descriptive attributes used.

Version history

Version Date Change
1 2015-07-14 Initial version
2 2015-11-30 Modifications in parameters and

preconditions definition

2

Table of contents

Abstract ... 1

Version history ... 1

Introduction... 3

Relation to other standards and documents .. 3

Data model .. 3

XBRL specifications compliance .. 3

Supporting concepts .. 4

Owner .. 4

Model supporting schema .. 5

Namespaces... 5

Public elements ... 5

Dictionary of concepts ... 6

Metrics .. 7

Dimensions .. 8

Domains .. 9

Explicit domain members and hierarchies .. 10

Reporting requirements layer .. 11

Frameworks ... 11

Taxonomies ... 12

Tables .. 12

Modules... 14

Filing Indicators .. 15

Validation rules .. 16

Assertion sets .. 16

Preconditions and filing indicator parameters .. 17

Notation .. 18

Hypercubes .. 19

Architecture file structure .. 20

3

Introduction

This document presents and explains the architecture of the XBRL taxonomy of the Bank of Israel. The
expected audience of this document are software developers and IT departments of commercial banks
and other entities that are subject of supervision of the Bank of Israel. This document can be also useful
for developers of software that produces or consumes instance documents following this taxonomy.

Relation to other standards and documents

Comprehension of the Extensible Business Reporting Language (XBRL) 2.1 Specification and various other
XBRL Specifications such as XBRL Dimensions 1.0, XBRL Formula 1.0, Generic Link 1.0 and Table Linkbase
1.0 (Public Working Drafts) is required to understand the content of this document.

For modelling of data (in terms of methodology and format) as well as physical representation in XBRL
syntax, the BoI followed the approaches applied for various deliverables of the Eurofiling project1,
especially Data Point Modelling methodology which is extensively described on the Eurofling webpage.

Data model

Prior to the development of an XBRL taxonomy (which is technical format used for data exchange),
information requirements need to be identified by specifying reportable pieces of information. This is
usually done in form of data models. Data models organize the data for communication purposes (e.g.
between business and IT experts, or between various groups of business experts).

In the case of the BoI data model, the inputs for creation of the model are directives consisting of
reporting requirements in tabular forms, additional information as well as validation rules.

These materials and underlying regulations are analyzed according to the Data Point Modelling
methodology in order to create a Data Point Model format. There are two main deliverables of this
process:

 Dictionary – defining properties (and their classifications/breakdowns) that can be used to
describe each exchanged piece of information, and hierarchical relations between them.

 Annotated templates – Set of tables where each row/column/sheet is associated with a property
or a set of properties defined in the dictionary

XBRL specifications compliance

Following the XBRL standard requirements, the BoI taxonomies, and any XBRL instance documents are
compliant with the XBRL 2.1 specification as of December 31, 2003 with Errata Corrections up to January
25, 2012, and the Dimensions 1.0 specification as of September 18, 2006 with errata corrections up to
January 25, 2012.

1 Eurofiling is an European initiative that gathers supervisory authorities, commercial banks, software vendors and
other stakeholders in order to share their experiences and innovations related with financial reporting supply
chain. http://eurofiling.info

4

The business rules layer in the form of linkbase files is defined according to the XBRL Formula
Specification 1.0 - 2009 – 2011 and supporting specifications (Registry – 2009-2011, Generic Links – June
22, 2009).

Rendering of tables is created according to the Public Working Draft of the Table Linkbase specification
published on 17 May 2013.

For convenience for reviewers, the taxonomy files provided contain technical files defined by various
XBRL specifications and registries. They are placed in the folder www.xbrl.org. In addition shared files
from www.eurofiling.org are also included. The inclusion of these files simplifies the use of the supplied
taxonomy files offline if required.

The Taxonomy files reference these files in their official locations. As such mappings will usually be
required to be configured in most XBRL software to utilize the local version of these files, rather than
those at the official locations, if so desired.

Supporting concepts

This chapter describes some concepts that are used in the Data Point Model taxonomies

Owner

The owner represents an institution that defines concepts of the model. The owner is closely related to
the idea of extensibility in XBRL. The main properties of the owner are:

 Owner’s namespace (ons) and owner’s prefix (opre): the owner namespace is a URI used to
establish the namespace of the concepts defined by that owner. This URI is generally built by
adding the “xbrl” particle to the internet domain of the institution that the owner represents
plus an optional particle.
The prefix is used as the basis to establish namespace prefixes in taxonomy files and for some
short representations of the concepts. Namespace prefixes do not impose any constraints on
instance files. Namespace prefixes are local to XML documents and XML elements, thus, instance
files and taxonomy consumers should never presume any particular use of prefixes; XML
documents consumption must be based on namespaces.

Owner Internet domain Namespace Prefix
Bank of Israel http://www.boi.org.il http://www.boi.org.il/xbrl boi
Eurofiling http://www.eurofiling.info http://www.eurofiling.info/xbrl eu

 Official location (oloc): URL used to specify the location where taxonomy files associated to that

owner are to be published. Different owners must have different official locations, even owners
with the same internet domain / same namespace. The official location is generally built by
adding three particles to the internet domain of the institution: one that represents the
geographical area covered by the institution, plus two fixed ones: “fr” (for financial reporting)
and “xbrl”:

Owner Official location
Bank of Israel
Eurofiling http://www.eurofiling.info/eu/fr/xbrl

5

 Copyright: text used as a header in every taxonomy file published by its owner.
 Supported languages: list of languages used in taxonomy files defined by an institution. It is used

to deduce the location of label linkbases in a certain language given the owner of the concept.
This enables the addition of labels to concepts imported from other taxonomies.

Model supporting schema

The XBRL representation of the model makes use of some schema definitions in the namespace
http://www.eurofiling.info/xbrl/ext/model. The official location of this schema file is
http://www.eurofiling.info/eu/fr/xbrl/ext/model.xsd. Throughout this document, the prefix “model” will
be used to make reference to this schema namespace.

Namespaces

The following table shows the prefixes used throughout this document as an abbreviated reference to
namespaces:

Prefix Namespace
xbrli http://www.xbrl.org/2003/instance
xbrldt http://xbrl.org/2005/xbrldt
link http://www.xbrl.org/2003/linkbase
xl http://www.xbrl.org/2003/XLink
gen http://xbrl.org/2008/generic
iso4217 http://www.xbrl.org/2003/iso4217
nonnum http://www.xbrl.org/dtr/type/non-numeric
num http://www.xbrl.org/dtr/type/numeric
model http://www.eurofiling.info/xbrl/ext/model
find http://www.eurofiling.info/xbrl/ext/filing-indicators
variable http://xbrl.org/2008/variable

Public elements

Public elements are concepts of the model that are identified by a code in a certain scope and may
include some additional information such as readable labels, definitions and legal references in different
languages.

Public elements include two attributes to reflect the creation date of the element (model:creationDate)
and the date when it was last modified (model:modificationDate).

Language specific information is represented using label resources (generic ones for concepts
represented as XLink resources and standard ones for concepts represented as XBRL items). The default
role (http://www.xbrl.org/2003/role/link) will be used for the extended links containing this information.
The following roles must be used for label resources:

Property Generic label role Standard label role
Name http://www.xbrl.org/2008/role/label http://www.xbrl.org/2003/role/label

6

Definition http://www.xbrl.org/2008/role/verboseLabel http://www.xbrl.org/2003/role/verboseLabel

The labels of the concepts of a schema file are represented together in label linkbases by language, in
the same folder as its corresponding schema file. The naming convention for these linkbases is:

{main-file}-lab-{lang}.xml

Where {main-file} corresponds to the name of the schema or linkbase file where the concept is defined
without extension, and {lang} corresponds to the ISO 639-1 code of the language (lowercase).

In addition to this, some concepts of the dictionary may contain a special linkbase to represent codes
needed for different purposes. More specifically, the codes given to the columns and rows of tables are
represented using this mechanism. The name of this linkbase is as follows:

{main-file}-lab-codes.xml

The labels for these codes will be represented as resources with the following role, as defined in the
model schema:

http://www.eurofiling.info/xbrl/role/rc-code

Extensions might use this mechanism to add their own application specific codifications using different
roles.

Dictionary of concepts

The core concepts of the dictionary are metrics, dimensions, domains and domain members. All the
concepts in the dictionary are public elements. In addition to the properties and language specific
information of public elements, dictionary elements include two optional attributes that establish its
currency period: the starting date of the period interval (model:fromDate attribute) and its end date
(model:toDate attribute). If the “fromDate” attribute is not included, then the concept is assumed to be
current for any period prior to the “toDate” attribute. If the “toDate” attribute is not included, then the
concept is assumed to be current for any period after the “fromDate” attribute. If neither “fromDate”
nor “toDate” attributes are included, then the concept is assumed to be current for any period of time.
The first versions of the dictionary won’t include this attribute. As new versions are released and some
concepts become obsolete and replaced by others, these attributes will be updated. These attributes
don’t have any impact on the reporting process itself; they are meant to make easier the management of
the concepts of the dictionary.

All files in the dictionary of concepts are placed under the folder “dict” in the official location of its
owner. Its namespace is obtained by adding a suffix that depends on the type of element to the
namespace of the owner. The prefix to represent that namespace is obtained by adding a predefined
suffix to the prefix of its owner:

Dictionary concept Official location Target namespace Namespace prefix
Metrics {oloc}/dict/met/met.xsd {ons}/dict/met {opre}_met
Dimensions {oloc}/dict/dim/dim.xsd {ons}/dict/dim {opre}_dim
Explicit domains {oloc}/dict/dom/exp.xsd {ons}/dict/exp {opre}_exp

7

Typed domains {oloc}/dict/dom/typ.xsd {ons}/dict/typ {opre}_typ
Explicit domain
members of domain

{oloc}/dict/dom/{dc}/mem.xsd {ons}/dict/dom/{DC} {opre}_{DC}

Where {oloc} represents the official location of taxonomy files of the owner of the concepts, {ons} its
base namespace, {opre} the prefix of its base namespace, and {dc}/{DC} the code of a domain in lower
and capital case. In the case of the dictionary of concepts of the BoI:

Dictionary
concept

Official location Target namespace Prefix

Metrics http://www.boi.org.il/fr/xbrl/dict/met/met.xsd http://www.boi.org.il/xbrl/dict/met boi_met
Dimensions http://www.boi.org.il/fr/xbrl/dict/dim/dim.xsd http://www.boi.org.il/xbrl/dict/dim boi_dim
Explicit
domains

http://www.boi.org.il/fr/xbrl/dict/dom/exp.xsd http://www.boi.org.il/xbrl/dict/exp boi_exp

Typed
domains

http://www.boi.org.il/fr/xbrl/dict/dom/typ.xsd http://www.boi.org.il/xbrl/dict/typ boi_typ

Explicit
domain
members of
domain
(domain
MC)

http://www.boi.org.il/fr/xbrl/dict/dom/MC/mem.xsd http://www.boi.org.il/xbrl/dict/dom/MC boi_MC

Metrics

Metrics define the nature of the measure to be performed. Metrics determine the data type, the period
type (instant / duration) plus additional semantics of their corresponding data points. Metrics are
represented in XBRL as primary items and in the model they’re also referred as Amount types (AT).

All the contexts in an instance document are expected to include an xbrli:period element with the same
value: the reference period in the case of metrics of duration type, or the end of the reference period
(for metrics of instant type). The variations from this reference period in certain data points are
expressed with the combination of “comparison period” (RPC) and “reference period” (RPP) dimensions.
This approach has been introduced in order to overcome the difficulty of defining time constraints for
multiple periods in the table and definition linkbases.

Comparison period (RPC) dimension is used to enable entry of values for past periods like last year,
equivalent quarter of last year etc. This is used to resemble current visualization of reporting
requirements with different comparison periods identified on the columns of the tables.

Reference period (RPP) dimension is used to explain relative time reference for particular data point, e.g.
“trailing year”.

The local name of base items is composed of three parts:

 A letter that represents the data type in lower case (see data types table below)
Model data type XBRL data type Local name

codification letter
Reporting unit

Monetary (currency) xbrli:monetaryItemType m Adequate currency using

8

ISO 4217 codification (e.g.:
iso4217:ILS)

Percent num:percentItemType p xbrli:pure
Decimal xbrli:decimalItemType r xbrli:pure
Integer xbrli:integerItemType i xbrli:pure
Date xbrli:dateItemType d No unit
Boolean (true/false or
0/1)

xbrli:booleanItemType b No unit

Text xbrli:stringItemType s No unit
Explicit domain xbrli:qnameItemType e No unit
Typed domain Domain corresponding data type, codification letter and reporting unit

 A letter that represents the period type (i: instant, d: duration).
 A number that corresponds to the numeric code in the model (no zero padding or

predetermined length).

In the case of domain based data types, an additional attribute (model:domain) is included to identify the
qualified name of the domain (explicit or typed). Where the acceptable set of values for such a metric is
a subset of the full set of values within an explicit domain, an additional attribute (model:hierarchy) is
included to identify the URI of the role of a hierarchy containing the acceptable subset of domain values:

<xs:element name="ei58" type="xbrli:QNameItemType" substitutionGroup="xbrli:item" id="boi_ei58"
xbrli:periodType="instant" nillable="true" model:domain="boi_exp:BI"
model:hierarchy="http://www.boi.org.il/xbrl/role/dict/dom/BI/1" />

In the above example, element has a restriction on reported values to the members of hierarchy 1 from
the BI domain.

The id of the element (necessary for XLink locators) is composed like this:

{opre}_{name}

Where {opre} represents the prefix of the base namespace of the owner of the base item and {name}
represents the name described above. Some examples follow:

Data type Period type Code Name Id Prefix
Monetary Instant 5 mi5 boi_mi5 boi_met
Date Instant 177 di177 boi_di177 boi_met
Integer Duration 102 id102 boi_id102 boi_met

Dimensions

Dimension items are represented in XBRL as XDT dimensions. The local name of each dimension
corresponds to its code in the model: a short sequence of capital case letters (usually three, but it is not
limited to three letters, where first two letters represents code of the domain used).

The id of the element (necessary for XLink locators) is composed like base items:

{opre}_{name}

9

Where {opre} represents the prefix of the base namespace of the owner of the dimension and {name}
represents the name described above. Some examples follow:

Code Name Id Prefix
MCC MCC boi_MCC boi_dim
SEC SEC boi_SEC boi_dim
RTT RTT boi_RTT boi_dim

Dimension schemas include a reference to a definition linkbase whose file name is “dim-def.xml” and is
placed in the same folder as the schema file. This linkbase includes the following information about
explicit dimensions:

 Reference to the domain associated to the dimension by means of a dimension-domain
relationship (with xbrldt:usable attribute equal to false).

 Reference to the default member of that dimension by means of a dimension-default
relationship. Note that though the model defines default members at domain level, the
dimensions XBRL specification establishes this relationship at dimension level. Thus, each
dimension using a domain with a default member must include this relationship.

These relationships are defined in an extended role that is the standard one
(http://www.xbrl.org/2003/role/link)

Domains

Explicit domains are represented using XBRL abstract items of domain type
(“model:explicitDomainType”) in the schema file (“exp.xsd”). Typed domains are represented as XML
elements that are not in the substitution group of xbrli:item. These elements are defined in the schema
file (“typ.xsd”)2.

The local name of each domain corresponds to its code in the model model ({dom-code}): a short
sequence of capital case letters (usually two, but not limited to two letters). The id of the element
(necessary for XLink locators) is composed like base items:

{opre}_{name}

Where {opre} represents the prefix of the base namespace of the owner of the domain and {name}
represents the name described above. Some examples follow:

Code Element
name

Type Id Namespace Prefix

GA GA Explicit boi_GA http://www.boi.org.il/xbrl/dict/exp boi_exp
TD TD Typed boi_TD http://www.boi.org.il/xbrl/dict/typ boi_typ
TI TI Explicit boi_TI http://www.boi.org.il/xbrl/dict/exp boi_exp

2 Explicit domains are xbrli:items whereas typed domains are not. Because of this, labels for the former ones are
defined using standard label links and labels for the latter using generic label links. As some tools in the market do
not support a single file with two different extended links, these items have been split into two different schemas

10

Though the namespace of explicit and typed domains is different, different local names should be used
to avoid any confusion.

Explicit domain members and hierarchies
Explicit domain members are represented using XBRL abstract items of domain item type
(“domainItemType” is defined in the non-numeric set of types of XII’s type registry). The default domain
member of a domain (usually the one with code 0) is marked with an attribute: model:isDefaultMember
= “true”.

The local name of each explicit domain member corresponds to its numeric code in the model preceded
by a lower case “x”3. The id of explicit domain members follows the general rule:

{opre}_{name}

The schema file that represents explicit members is placed in a folder with the name of its corresponding
domain. The schema file for explicit domain members is called “mem.xsd”:

Domai
n code

Domain members schema Namespace Prefix

MC http://www.boi.org.il/fr/xbrl/dict/dom/MC/mem.x
sd

http://www.boi.org.il/xbrl/dict/dom/M
C

boi_M
C

SE http://www.boi.org.il/fr/xbrl/dict/dom/SE/mem.xs
d

http://www.boi.org.il/xbrl/dict/dom/S
E

boi_SE

Hierarchies are represented using XBRL extended link roles whose role is built following this pattern:

{ons}/role/dict/dom/{dom-code}/{hierarchy-code}

Where {ons} represents the namespace of the owner, {dom-code} represents the code of the domain
and {hierarchy-code} the numeric code of the hierarchy. The id of these roles is composed following the
pattern:

{opre}_{code}

Domain code Hierarchy code Role Id
MC 1 http://www.boi.org.il/xbrl/role/dict/dom/MC/1 boi_1
SE 13 http://www.boi.org.il/xbrl/role/dict/dom/SE/13 boi_13

The schema file that represents hierarchies is placed in the same folder as members and it is called
“hier.xsd”. In addition to labels, these schemas include three additional linkbases with information about
hierarchies:

 A presentation linkbase (hier-pre.xml), which represents the hierarchical disposition of members
in hierarchies using parent-child relationships.

 A definition linkbase (hier-def.xml), which enables the inclusion of the members of a hierarchy in
dimensional combinations using domain-member relationships.

3 Local names are XML schema tokens and thus, are not allowed to start with a numeric character

11

 calculation linkbase (hier-cal.xml), which establishes some basic arithmetical relationships
between a member of the hierarchy and its children:

o A member is equal to the addition of its child members in the hierarchy: complete-
breakdown relationships.

o A member is greater or equal than the addition of its child members in the hierarchy:
partial-breakdown relationships.

o A member is less or equal than the addition of its child members in the hierarchy:
superset-breakdown relationships.

These arc roles are defined in the model schema:

Arc role id Arc role URI
complete-breakdown http://www.eurofiling.info/xbrl/arcrole/complete-breakdown
partial-breakdown http://www.eurofiling.info/xbrl/arcrole/partial-breakdown
superset-breakdown http://www.eurofiling.info/xbrl/arcrole/superset-breakdown

These arcs (calculation arcs) include a weight attribute to indicate whether the child member contributes
to the aggregation positively (+1) or negatively (-1). The roles that represent these calculation
relationships are defined in the schema that supports the model. The root member of the definition and
presentation relationship networks is the domain item defined in the schema.

Reporting requirements layer

Frameworks, taxonomies, tables, modules and other concepts constitute the layer of the model where
actual reporting requirements are specified with the support of the financial concepts defined in the
dictionary.

All the files that correspond to this layer are placed under the folder “fws” in the official location of its
owner. Its namespace is obtained by adding the suffix “fws” to the base namespace of the owner plus
some additional suffixes that depend on the type of concept represented.

Frameworks

Frameworks are public elements represented using XBRL abstract items of framework type
(“model:frameworkType”) in the schema file “fws.xsd”. The local name of each framework element
corresponds to its code in the model and its id follows the general pattern.

Schema property Value
Official location {oloc}/fws/fws.xsd
Target namespace {ons}/fws
Target namespace prefix {opre}_fws
Element local name {framework}
Element id {opre}_{framework}

BoI is modularized in a way that every of the reporting directives constitutes separate framework
container, e.g.

12

Schema property Value
Official location http://www.boi.org.il/fr/xbrl/fws/fws.xsd
Target namespace http://www.boi.org.il/xbrl/fws
Target namespace prefix boi_fws
Element local name d806; d87; d810D; d98 …
Element id boi_d806; boi_d87; boi_d810D; boi_d98 …

Each framework has a folder where the files of its taxonomies are placed. This folder has the name of its
code in the model:

Description Framework folder
Directive 98 http://www.boi.org.il/fr/xbrl/fws/d98
Directive 810D http://www.boi.org.il/fr/xbrl/fws/d810d

Taxonomies

Taxonomies are public elements represented using XBRL abstract items of taxonomy type
(“model:taxonomyType”). These elements are stored in the schema file “tax.xsd” under the folder of its
framework, a subfolder that corresponds to its normative code and another subfolder with the date of
its version, using the ISO 8601 codification.

Thus, the file “tax.xsd” includes a single element. Its local name corresponds to its code in the model and
its id uses the general pattern:

Schema property Value
Official location {oloc}/fws/{framework}/{normative}/{pub-date}/tax.xsd
Target namespace {ons}/fws/{framework}/{normative}/{pub-date}
Target namespace prefix {opre}_tax
Element local name {taxonomy}
Element id {opre}_{taxonomy}

Since every directive is stored in a separate framework, there will be only one normative code per
framework, however, there can be multiple versions basing on a publication date only.

Description Version Taxonomy folder
Directive 98 1.0 http://www.boi.org.il/fr/xbrl/fws/d98/d98/2015-07-15
Directive 98 2.0 http://www.boi.org.il/fr/xbrl/fws/d98/d98/2015-12-31
Directive 814 1.0 http://www.boi.org.il/fr/xbrl/fws/d814/d814/2015-07-15
Directive 814 2.0 http://www.boi.org.il/fr/xbrl/fws/d814/d814/2015-09-30

The folder of a taxonomy includes three folders for tables (tab), modules (mod) and validations (val).

Tables

The table folder includes a schema file (tab.xsd), a generic linkbase with the hierarchy of table groups
and tables (tab-pre.xml) and a label linkbase for table groups (tab-lab-en.xml). The schema includes the
definition of table groups (if any), which are represented using XBRL abstract items of table group type

13

(“model:tableGroupType”). Its name is composed by adding the prefix “tg” to the code in the model. The
linkbase with the hierarchy of tables is not referenced in schema; otherwise, all the modules defined in a
taxonomy would include indirect links to all the tables in the taxonomy.

Schema property Value
Official location {taxonomy-loc}/tab/tab.xsd
Target namespace {taxonomy-ns}/tab
Target namespace prefix {opre}_tab
Element local name tg{table-group-code}
Element id {opre}_{local-name}

Arcs with role “group-table” are used to establish the link between a table group and other table groups
or tables in the presentation linkbase. This arc role is defined in the schema that supports the model.

Table groups are used to link numerous tables resulting from normalization of templates or if an original
templates is composed by two or more physical tables. In other words, table groups represent those
templates that consist of more than one table. If a business template was normalized (e.g. table 98-1),
then resulting sub-tables contain additional suffix to its names (98-1.a; 98-1.b; 98-1.c; …). General
approach of application these suffixes is that part .a is the beginning of a table (row 1 and/or column 1)
of a normalized table, and consequent parts are first moving horizontally, and later vertically to the last
columns and rows.

One of the other results of normalization of templates is removing redundant rows and/or columns. As a
consequence, it can happen that in the sub-table of a normalized table, some rows or columns can be
skipped.

The files that define the content of each table are placed in a folder whose name corresponds to the
code of the table in the model:

Schema property Value
Official location {taxonomy-loc}/tab/{table}/{table}.xsd
Target namespace {taxonomy-bns}/tab/{table}
Target namespace prefix {opre}_tab_{table}
Element local name N/A (elements defined as resources in

linkbases)
Element id {opre}_{table} (element defined as a resource in

the rendering linkbase)

In addition to label linkbases, this schema includes a table linkbase ({table}-rend.xml) and a definition
linkbase ({table}-def.xml).

The table linkbase includes the definition of the table according to the specification. The relationships of
each table are placed in an extended link whose role is built following this pattern:

{ons}/role/fws/{framework}/{normative}/{pub-date}/tab/{table}

14

In this linkbase, the different components of tables are represented using resources. The “id” of these
resources is based on the code of the model plus a prefix to obtain a unique code in the context of the
linkbase file:

Model class Table linkbase resource ID
Table Table {opre}_t{code}
Predefined axis ruleAxis (abstract = true) {opre}_a{code}
Variable axis filterAxis {opre}_a{code}
Coordinate ruleAxis {opre}_c{code}
Base items hierarchy reference conceptRelationshipAxis {opre}_h{code}
Dimension hierarchy reference dimensionRelationshipAxis {opre}_h{code}

The definition linkbase includes dimensional relationships valid in the context of the table. Valid
combinations are defined using only positive (all) closed hypercubes obtained from the set of valid cells
of the table

Each extended link role contains a set of primary items and a single hypercube4. In case of multiple
primary items, the first one will be used to group the rest and reduce the number of “all” arcs. The
domain element will be used as target of dimension-domain arcs to avoid cycles. The @xbrldt:targetRole
attribute might be necessary in the case of hypercubes with dimensions sharing the same domain.

The roles of the extended links necessary to express these combinations are built adding numeric
suffixes to the role previously defined for the table. For example:

{ons}/role/fws/{framework}/{normative}/{pub-date}/tab/{table}/1

{ons}/role/fws/{framework}/{normative}/{pub-date}/tab/{table}/2

The label linkbase file for a table contains labels for Table Linkbase nodes. In addition to the standard
label, a table:table node, also contains a documentation and filing indicator label which defines a code to
be used on filing indicators (see next section of this document).

The link between table groups and individual tables is established in the tab-pre.xml linkbase file as well
as in linkbase files of modules (as described below).

Modules

Modules are represented using XBRL abstract items of module type (“model:moduleType”). Each module
is stored in a different schema file whose name module file is the same as the code of the module in the
model plus the extension “.xsd”. These schema files imports the schemas of all the tables imported by
that module:

Schema property Value
Official location {taxonomy-loc}/mod/{module}.xsd
Target namespace {taxonomy-bns}/mod/{module}
Target namespace prefix {opre}_mod_{module}

4 The model schema includes a hypercube element to be used. There is no need to define hypercube elements in
each table or taxonomy.

15

Element local name mod_{module}
Element id {opre}_mod_{module}

In addition to label linkbases, each module includes a presentation linkbase (“{module}-pre.xml”) where
the relationship between modules and tables / table groups is expressed using group-table arcs whose
source is the module element and target is the table / group of tables element. Furthermore, table
groups link to individual tables via a group-table relation.

The module schema also imports the formula linkbases and the linkbases with the preconditions on filing
indicators.

Modules in the BoI taxonomy serve as entry points, defining the potential tables in each individual
instance file that can be reported. Usually, there is one module (entry point) per directive gathering all
templates, but there can be cases (e.g. Directive 865) where two or more different reporting scenarios
gathering different set of templates are applicable (Annually and Quarterly reporting).

Filing Indicators

Filing indicators serve the purpose of communicating the scope of the reported data based on templates.
The main purposes of filing indicators are to:

 provide hints to applications using the taxonomy, when processing instance files, on which
templates are included in the filing and, for example, shall be displayed to users,

 trigger execution of business rules (XBRL assertions) to be run on a filing to check its correctness
depending on the reported scope of data.

In technical terms, filing indicators are facts included as part of an instance document where the filer
provides information about the reported templates (within the scope defined by a module that the filing
is defined against, see previous section on Modules).

The elements and attributes used to communicate filing information are defined in the namespace
http://www.eurofiling.info/xbrl/ext/filing-indicators. The official location of this schema file is
http://www.eurofiling.info/eu/fr/xbrl/ext/filing-indicators.xsd. This schema file is imported in every
taxonomy module. Throughout this document, the prefix “find” will be used to make reference to this
schema namespace.

Each reported template is represented as an instance fact of the item find:filingIndicator under the
find:fIndicators tuple element. If there is no filing indicator for a template included in a module, it is
assumed that a filing contains no information on this template. In some rare cases however, it may be
necessary that filers explicitly identify unreported templates, usually with a reason explaining this
situation/choice. To cater for this situation, a find:filingIndicator fact relating to the template
identification can have a find:filed attribute set to boolean “false”.

The following instance represents a filing with information about template with code 865-1 and no
information (explicitly stated) on template 865-21:

<find:fIndicators>
<find:filingIndicator contextRef=”context”>865-1</find:filingIndicator>

16

<find:filingIndicator contextRef=”context” filed=”false”>865-21</find:filingIndicator>
</find:fIndicators>

Contexts to which facts representing find:filingIndicator element refer must identify the reporting entity
and use the end date of the reporting period as the instant date.

Identification of templates on find:filingIndicator facts is made using codes. These codes are represented
as label resources with the following role, as defined in the model schema:

http://www.eurofiling.info/xbrl/role/filing-indicator-code

These code labels are applied to a table:table resource.

Validation rules

In the current version of the BoI taxonomy, validation checks are based on the legacy business rules used
in the ZPTM system. Since previously, no unique identifiers for validations were used, they were
generated and applied in the BoI taxonomy for the first time.

Current set of validation rules do not apply generalization of filters, meaning that single assertion should
result with a single evaluation (except situations with comparison period, where single formula can be
applied to one or more comparison periods)

Assertion sets

Validations are grouped into assertion sets that correspond to the tables they are to be applied. In the
context of a table, not reported or nil numeric values will be assumed to be zero; consequently, fallback
values are used in their corresponding assertion definitions.

The link between an assertion set and the table (or tables19) it applies is represented using applies-to-
table arcs from the assertion set to the resource that corresponds to the table. The URI of this arc is
http://www.eurofiling.info/xbrl/arcrole/applies-to-table

If an assertion applies to multiple tables individually or to multiple sets of tables, then it will be
associated to different assertion sets

Assertion example (textual description) Assertion sets Tables
$a > 0 (where $a represents data in table 1) assertion set 1 table 1
$a > 0 (where $a represents data in tables 1, 2 and 3) assertion set 1 table 1

assertion set 2 table 2
assertion set 3 table 3

$a = $b (where $a represents data in table 1 whereas $b represents
data in table 2)

assertion set 4 table 1
table 2

$a = $b (where in some cases, $a represents data in table 1 and $b
data in table 2; in other cases, $a represents data in table 3 and $b
represents data in table 4)

assertion set 4

table 1
table 2

assertion set 5 table 3
table 4

17

Assertion sets resources might include the attributes fromDate and toDate to constraint the reference
date where their associate assertions should be applied.

As suggested by the XBRL specification, assertion sets can be used as a mechanism to control the set of
assertions to be evaluated in a validation process. Following this approach, an application processing a
certain filing would configure the processor to skip all those assertion sets that are linked to a table that
is not reported.

However, currently, the XBRL specifications do not provide a standard API to pass this information to
XBRL processors, neither a standard way for the filer to indicate that only a subset of all the tables in an
entry point is being submitted. To overcome this situation, a mechanism based on preconditions and
filing indicators is provided.

Preconditions and filing indicator parameters

Each value assertion defined is associated to a precondition5 on filing indicators. To avoid XBRL instance
syntactic dependencies, rather than including directly an XPath expression, preconditions include a
reference to a filing indicator parameter (no variableset-variable arc are required). The default value of
this parameter is an XPath expression to obtain the information from the filing indicators in the instance
document. This way, there is no need to provide externally a value to the processor (the value from the
instance is used), the parameter is guaranteed to be only evaluated once (providing more chances for
processors to perform optimizations), precondition expressions are simpler, and it makes possible, for
more advanced uses, to override this value at application level (for instance, if the filing requirements of
a credit institution are known, an application could override the values for filing indicator parameters
rather than accepting the values provided by the filter).

There is a filing indicators parameter defined for each table defined in the framework. These parameters
are defined in the namespace of the filing indicators schema and have a name according to the following
convention:

t{table-code}

where table-code represents the code of the corresponding table. Thus, the definition of one of these
parameters would look like this:

<variable:parameter name="find:t{table-code}" select="//find:fIndicators/find:fIndicator =
‘{template-code}’" as="xs:boolean" …/>

Where ‘template-code’ represents the code of the template

Each precondition is composed as a sequence of or expressions that correspond to each set of tables
where the validation is to be applied. Each or expression is composed of a sequence of and expressions
on the tables involved:

“$find:t{t98-21} and $find:t{t98-22} and …”

Some examples:

5 Assertions might have additional preconditions as required by the logic of the assertion to be tested. But these
additional preconditions do not depend on filing indicators.

18

Expression Explanation
$find:t1 Assertion applies only to table 1
$find:t1 and $find:t2 Assertion crosses information between tables 1 and 2
$find:t1 or $find:t2 Assertion applies to both table 1 and table 2, but

considered in an individual way (there are no cross
checks)

$find:t1 and $find:t2 or $find:t3 and
$find:t4

Assertion performs cross-checks between information in
table 1 and table 2 on the one hand. On the other hand, it
cross-checks information between table 3 and 4.

Notation

Assertions are being identified by a unique code, to enable the identification of errors in a validation
process with the corresponding definition. It must be noted that an XBRL assertion might produce
several evaluations covering different sets of data points. Assertions might include a description and
custom error messages, as defined by business experts. Additionally, there are two levels of severity of
an error that evaluation may raise:

 fatal
 warning

Information about severity of particular business rule is stored within the name of the file where suffix
“_f” representing fatal error or “ _w” representing warning is added.

The files that define assertions and assertion sets are grouped into files depending on their scope. These
files are placed in the “val” folder of the corresponding taxonomy, together with files to define
preconditions and filters of common use shared by different assertions in the taxonomy and parameters:

Resource description File location
Assertions file {taxonomy-loc}/val/vr-v{ID}_{f/w}.xml
Assertion sets location that apply to a single table {taxonomy-loc}/val/aset-{tab1}.xml
Assertion sets location that apply to multiple
tables individually

{taxonomy-loc}/val/aset-{tab1}.xml
{taxonomy-loc}/val/aset-{tab2}.xml

Assertion sets location that cross information in a
set of tables

{taxonomy-loc}/val/aset-{tab1}_{tab2}.xml

Assertion sets that cross information in a multiple
sets of tables

{taxonomy-loc}/val/aset-{tab1}_{tab2}.xml
{taxonomy-loc}/val/aset-{tab3}_{tab4}.xml

Preconditions on filing indicators plus variable-
set-precondition arcs

{taxonomy-loc}/mod/{module}-find-prec.xml

Filing indicators parameters {taxonomy-loc}/val/find-params.xml

Any of these linkbases can have its corresponding set of label linkbases, following the convention defined
in this document. In the cases of assertions, an additional set of linkbases might be included for error
messages expressed in different languages:

{assertions-file}-err-{lang}.xml

Where {assertions-file} corresponds to the name of the file with the assertions whose error message are
described, without the extension.

19

Currently, for every assertion there is an error message containing information about table and cells
involved in given validation check.

These files will be included by the modules defined in the taxonomy.

Hypercubes

It is important to remark that the XBRL hypercubes in the taxonomy are validation artefacts (essentially
just indicating grey cells) and should not be used by external systems for the automatic creation of
database structures. The hypercubes in the taxonomy are generated automatically by an algorithm, and
do not obey to any kind of business criteria. These hypercubes might be dramatically modified with any
future change to the reported information in a table, with the only consideration being the reduction of
the final set of hypercubes and performing more efficiently with XBRL market tools.

20
 Architecture file structure

<owner location>

dict

met

hier.xsd
hier-lab-en.xml

hier-lab-codes.xml
hier-pre.xml
hier-def.xml
hier-cal.xml

met.xsd
met-lab-en.xml

met-lab-codes.xml

dim

dim.xsd
dim-lab-en.xml

dim-lab-codes.xml
dim-def.xml

fam.xsd
fam-lab-en.xml

pers.xsd
pers-lab-en.xml

pers-pre.xml

dom

exp.xsd
exp-lab-codes.xml

exp-lab-en.xml

typ.xsd
typ-lab-en.xml

typ-lab-codes.xml

<dc>
(domain code), e.g.

bc, mc, …

hier.xsd
hier-lab-en.xml

hier-lab-codes.xml
hier-pre.xml
hier-def-xml
hier-cal.xml

mem.xsd
mem-lab-en.xml

mem-lab-codes.xml
mem-def.xml

fws

fws.xsd
fws-lab-codes.xml

fwr-lab-en.xml

{framework name},
e.g d98; d807

{normative code}
e.g. d98; d807

{publication date:
yyyy-mm-dd} e.g.

2015-12-31

tax.xsd
tax-lab-codes.xml

tax-lab-en.xml

tab

tab.xsd
tab-lab-codes.xml

tab-lab-en.xml
tab-pre.xml

<table>
e.g. 98-35; 865-1;

87-15.a

<table>.xsd
<table>-lab-codes.xml

<table>-lab-en.xml
<table>-def.xml

<table>-rend.xml

mod

<module>.xsd
<module>-find-prec.xml
<module>-lab-codes.xml

<module>-lab-en.xml
<module>-pre.xml

val
find-params.xml, params.xml, params-lab-en.xml,

aset-<table(s)>.xml,
vr-v{nnnn}_{f}.xml, vr-v{nnnn}_{f}-err-en.xml, vr-v{nnnn}_{f}-lab-en.xml

