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Text Mining Methodologies with R :
An Application to Central Bank Texts

Jonathan Benchimol, Sophia Kazinnik, and Yossi Saadon

Abstract

We review several existing methodologies in text analysis and explain formal processes of text analysis
using the open-source software R and relevant packages. We present some technical applications of

text mining methodologies comprehensively to economists.
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1 Introduction

A large and growing amount of unstructured data is available nowadays. Most of
this information is text-heavy, including articles, blog posts, tweets and more formal
documents (generally in Adobe PDF or Microsoft Word formats). This availability
presents new opportunities for researchers, as well as new challenges for institutions.
In this paper, we review several existing methodologies in analyzing text and describe
a formal process of text analytics using open source software R. Besides, we discuss
potential empirical applications.

This paper is a primer on how to systematically extract quantitative information
from unstructured or semi-structured data (texts). Text mining, the quantitative
representation of text, has been widely used in disciplines such as political science,
media, and security. However, an emerging body of literature began to apply it
to the analysis of macroeconomic issues, studying central bank communication and
financial stability in particular.! This type of text analysis is gaining popularity, and
is becoming more widespread through the development of technical tools facilitating
information retrieval and analysis.?

An applied approach to text analysis can be described by several sequential steps.
A uniform approach to creating such measurement is required to assign a quantitative
measure to this type of data. To quantify and compare texts, they need to be mea-
sured uniformly. Roughly, this process can be divided into four steps. These steps
include data selection, data cleaning process, extraction of relevant information, and
its subsequent analysis.

We describe briefly each step below and demonstrate how it can be executed and
implemented using open source R software. We use a set of monthly reports published
by the Bank of Israel as our data set.

Several applications are possible. An automatic and precise understanding of
financial texts could allow for the construction of several financial stability indicators.
Central bank publications (interest rate announcements, official reports, etc.) could
also be analyzed. This quick and automatic analysis of the sentiment conveyed by
these texts should allow for fine-tuning of these publications before making them
public. For instance, a spokesperson could use this tool to analyze the orientation of
a text—an interest rate announcement for example—before making it public.

The remainder of the paper is organized as follows. Section 2 describes text

!See, for instance, Bholat et al. (2015), Bruno (2017), and Correa et al. (2020).

2See, for instance, Lexalytics, IBM Watson AlchemyAPI, Provalis Research Text Analytics Soft-
ware, SAS Text Miner, Sysomos, Expert System, RapidMiner Text Mining Extension, Clarabridge,
Luminoso, Bitext, Etuma, Synapsify, Medallia, Abzooba, General Sentiment, Semantria, Kanjoya,
Twinword, VisualText, SIFT, Buzzlogix, Averbis, AYLIEN, Brainspace, OdinText, Loop Cognitive
Computing Appliance, ai-one, LingPipe, Megaputer, Taste Analytics, LinguaSys, muText, Tex-
tualETL, Ascribe, STATISTICA Text Miner, MeaningCloud, Oracle Endeca Information Discovery,
Basis Technology, Language Computer, NetOwl, DiscoverText, Angoos KnowledgeREADER, Forest
Rim’s Textual ETL, Pingar, IBM SPSS Text Analytics, OpenText, Smartlogic, Narrative Science
Quill, Google Cloud Natural Language API, TheySay, indico, Microsoft Azure Text Analytics API,
Datumbox, Relativity Analytics, Oracle Social Cloud, Thomson Reuters Open Calais, Verint Sys-
tems, Intellexer, Rocket Text Analytics, SAP HANA Text Analytics, AUTINDEX, Text2data, Saplo,
and SYSTRAN, among many others.



extraction and Section presents 3 methodologies for cleaning and storing text for text
mining. Section 4 presents several data structures used in Section 5 which details
methodologies used for text analysis. Section 6 concludes, and the Appendix presents
additional results.

2 Text extraction

Once a set of texts is selected, it can be used as an input using package tm (Feinerer
et al., 2008) within the open-source software R. This package can be thought as a
framework for text mining applications within R, including text preprocessing.

This package has a function called Corpus. This function takes a predefined
directory which contains the input (a set of documents) and returns the output,
which is the set of documents organized in a particular way. In this paper, we refer to
this output as a corpus. Corpus here is a framework for storing this set of documents.

We define our corpus through R in the following way. First, we apply a function
called file.path, that defines a directory where all of our text documents are stored.?
In our example, it is the folder that stores all 220 text documents, each corresponding
to a separate interest rate decision meeting.

After we define the working directory, we apply the function Corpus from the
package tm to all of the files in the working directory. This function formats the set
of text documents into a corpus object class as defined internally by the tm package.

file.path <- file.path(".../data/folder")
corpus <- Corpus(DirSource(file.path))

Now, we have our documents organized as a corpus object. The content of each
document can be accessed and read using the writeLines function. For example:

writeLines(as.character(corpus[[1]]))

Using this command line we can access and view the content of document number
one within the corpus. This document corresponds to the interest rate discussion
published in December 2007. Below are the first two sentences of this document:

Bank of Israel Report to the public of the Bank of Israel’s discussions
before setting the interest rate for January 2007 The broad-forum
discussions took place on December 24, 2006, and the narrow forum
discussions on December 25, 2006, January 2007 General Before the Governor
makes the monthly interest rate decision, discussions are held at two

3The folder should contain text documents only. If there are other files in that location (i.e. R
files), than the Corpus function will include the text in the other files.
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levels. The first discussion takes place in a broad forum, in which the
relevant background economic conditions are presented, including real and
monetary developments in Israel’s economy and developments in the global
economy .

There are other approaches to storing a set of texts in R, for example by using
the function data.frame or tibble, however, we will concentrate on tm’s corpus
approach as it is more intuitive, and has a greater number of corresponding functions
explicitly written for text analysis.

3 Cleaning and storing text

Once the relevant corpus is defined, we transform it into an appropriate format for
further analysis. As mentioned previously, each document can be thought of as a
set of tokens. Tokens are sets of words, numbers, punctuation marks, and any other
symbols present in the given document. The first step of any text analysis framework
is to reduce the dimension of each document by removing useless elements (characters,
images, and advertisements,! etc.).

Therefore, the next necessary step is text cleaning, one of the crucial steps in text
analysis. Text cleaning (or text preprocessing) makes an unstructured set of texts
uniform across and within and gets rid of idiosyncratic characters.” Text cleaning
can be loosely divided into a set of steps as shown below.

The text excerpt presented in Section 2 contains some useful information about
the content of the discussion, but also a lot of unnecessary details, such as punctu-
ation marks, dates, ubiquitous words. Therefore, the first logical step is to remove
punctuation and idiosyncratic characters from the set of texts.

This includes any strings of characters present in the text, such as punctuation
marks, percentage or currency signs, or any other characters that are not words.
There are two coercing functions® called content_transformer and toSpace that,
in conjunction, get rid of all pre-specified idiosyncratic characters.

The character processing function is called toSpace. This function takes a pre-
defined punctuation character, and converts it into space, thus erasing it from the
text. We use this function inside the tm_map wrapper, that takes our corpus, applies
the coercing function, and returns our corpus with the already made changes.

In the example below, toSpace removes the following punctuation characters: “-”,

“«”, “”. This list can be expanded and customized (user-defined) as needed.

4Removal of images and advertisements is not covered in this paper.

’Specific characters that are not used to understand the meaning of a text.

6Many programming languages support the conversion of value into another of a different data
type. This kind of type conversions can be implicitly or explicitly made. Coercion relates to the
implicit conversion which is automatically done. Casting relates to the explicit conversion performed
by code instructions.



corpus <- tm_map(corpus, toSpace, "-")
corpus <- tm_map(corpus, toSpace, ",")
corpus <- tm_map(corpus, toSpace, ".")

The text below shows our original excerpt, with the aforementioned punctuation
characters removed:

The broad forum discussions took place on December 24 2006 and the narrow
forum discussions on December 25 2006 January 2007 General Before the
Governor makes the monthly interest rate decision discussions are held at
two levels The first discussion takes place in a broad forum in which the
relevant background economic conditions are presented including real and
monetary developments in Israel’s economy and developments in the global
economy

Another way to get rid of the punctuation marks, or characters, is to apply the
removePunctuation function to the corpus. This function removes a set of pre-
defined punctuation characters, but it cannot be customized if the need arises. One
can combine both approaches (toSpace and removePunctuation) in order to effec-
tively remove all punctuation and idiosyncratic characters from text.

Besides, any numbers present in the texts of our corpus can be removed by the
removeNumbers function, such as in the below code:

corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeNumbers)

Now, the text below shows our original excerpts, but without any punctuation
marks or digits:

The broad forum discussions took place on December and the narrow forum
discussions on December January General Before the Governor makes the
monthly interest rate decision discussions are held at two levels The first
discussion takes place in a broad forum in which the relevant background
economic conditions are presented including real and monetary developments
in Israels economy and developments in the global economy

The current text excerpt conveys the meaning of this meeting a little more clearly,
but there is still much unnecessary information. Therefore, the next step would be
to remove the so-called stop words from the text.

What are stop words? Words such as “the”, “a”, “and”, “they”, and many others
can be defined as stop words. Stop words usually refer to the most common words in



a language, and as they are so common, carry no specific informational content. Since
these terms do not carry any meaning as standalone terms, they are not valuable for
our analysis. In addition to a pre-existing list of stop words, ad hoc stop words can
be added to list.

We apply a function from the package tm onto our existing corpus as defined above
in order to remove the stop words. There is a coercing function called removeWords
that erases a given set of stop words from the corpus. There are different lists of stop
words available, and we use a standard list of English stop words.

However, before removing the stop words, we need to turn all of our existing
words within the text into lowercase. Why? Because converting to lowercase, or case
folding, allows for case-insensitive comparison. This is the only way for the function
removeWords to identify the words subject for removal.

Therefore, using the package tm, and a coercing function tolower, we convert our
corpus to lowercase:

corpus <- tm_map(corpus, tolower)

Below is the example text excerpt following the command mentioned above:

the broad forum discussions took place on december 24 2006 and the narrow
forum discussions on december 25 2006 january 2007 general before the
governor makes the monthly interest rate decision discussions are held at
two levels the first discussion takes place in a broad forum in which the
relevant background economic conditions are presented including real and
monetary developments in israels economy and developments in the global
economy

We can now remove the stop words from the text:

corpus <- tm_map(corpus, removeWords, stopwords("english"))

Here, tm_map is a wrapper function that takes the corpus and applies character
processing function removeWords onto all of the contents of the corpus (all 220 doc-
uments). It returns the modified documents in the same format, a corpus, but with
the changes already applied. The following output shows our original text excerpt
with the stop words removed:

broad forum discussions took place december narrow forum discussions
december january general governor makes monthly interest rate decision
discussions held two levels first discussion takes place broad forum
relevant background economic conditions presented including real monetary
developments israels economy developments global economy
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The next and final step is to stem the remaining words. Stemming is a process
of turning several words that mean the same thing into one. For example, after
stemming, words such as “banking”, “banks”, and “banked” become “bank”. As
stemming reduces inflected or derived words to their word stem or root. This can
be thought of as word normalization. Stemming algorithm allows us not to count
different variations as the same term as separate instances.

Below, we use a coercing function called stemDocument, that stems words in a
text document using Porter’s stemming algorithm. This algorithm removes common
morphological and inflectional endings from words in English, as described in the
previous paragraph.

corpus <- tm_map(corpus, stemDocument)

Once we have applied several of these character processing functions to our corpus,
we would like to examine it in order to view the results. Overall, as a result of the
above procedures, we end up with the following;:

broad forum discuss took place decemb narrow forum discuss decemb januari
general governor make month interest rate decis discuss held two level
first discuss take place broad forum relev background econom condit present
includ real monetari develop israel economi develop global economi

This last text excerpt shows what we end up with once the data cleaning ma-
nipulations are done. While the excerpt we end up with resembles its original only
remotely, we can still figure out reasonably well the subject of the discussion.”

4 Data structures

Once the text cleaning step is done, R allows us to store the results in one of the two
following formats, dtm and tidytext. While there may be more ways to store text,
these two formats are the most convenient when working with text data in R. We
explain each of these formats next.

TAnother way to perform the changes discussed in this section would be to use the dplyr com-
mand (see below). Both ways are viable, and we keep the longer explanation within the paper to
explain the sequence of steps thoroughly.

corpus = corpus %>% tm_map(removePunctuation) %> tm_map(removeNumbers) %>%
tm_map (tolower) %>% tm_map(removeWords,stopwords("english"))
%>%tm_map (stemDocument)



4.1 Document Term Matrix

Document Term Matrix (dtm) is a mathematical matrix that describes the frequency
of terms that occur in a collection of documents. Such matrices are widely used in
the field of natural language processing. In dtm, each row corresponds to a specific
document in the collection and each column correspond to the specific term within
that document. An example of a dtm is shown in Table 1.

Term j
Document ¢ | accord | activ | averag
May 2008 3 9 4
June 2008 6 4 16
July 2008 5 3 7
August 2008 4 9 12
September 2008 5 8 22
October 2008 3 20 16
November 2008 6 5 11

Table 1: An excerpt of a dtm

This type of matrix represents the frequency for each unique term in each docu-
ment in corpus. In R, our corpus can be mapped into a dtm object class by using the
function DocumentTermMatrix from the tm package.

dtm <- DocumentTermMatrix(corpus)

The goal of mapping the corpus onto a dtm is twofold; the first is to present the
topic of each document by the frequency of semantically significant and unique terms,
and second, to position the corpus for future data analysis.

The value in each cell of this matrix is typically the word frequency of each term
in each document. This frequency can be weighted in different ways, to emphasize
the importance of certain terms and de-emphasize the importance of others. The
default weighting scheme within the DocumentTermMatrix function is called Term
Frequency (tf). Another common approach to weighting is called Term Frequency -
Inverse Document Frequency (tf-idf).

While the tf weighting scheme is defined as the number of times a word appears
in the document, tf-idf is defined as the number of times a word appears in the
document but is offset by the frequency of the words in the corpus, which helps to
adjust for the fact that some words appear more frequently in general.

Why is the frequency of each term in each document important? A simple count-
ing approach such as term frequency may be inappropriate because it can overstate
the importance of a small number of very frequent words. Term frequency is the most



normalized one, measuring how frequently a term occurs in a document with respect
to the document length, such as:

t£(t) = Number of times term ¢ appears in a document

Total number of terms in the document (1)

A more appropriate way to calculate word frequencies is to employ the tf-idf
weighting scheme. It is a way to weight the importance of terms in a document
based on how frequently they appear across multiple documents. If a term frequently
appears in a document, it is important, and it receives a high score. However, if a
word appears in many documents, it is not a unique identifier, and it will receive a
low score. Eq. 1 shows how words that frequently appear in a single document will
be scaled up, and Eq. 2 shows how common words which appear in many documents
will be scaled down.

idf(t) = In ( 2)

Total number of documents
Number of documents with term ¢ in it

Conjugating these two properties yield the tf-idf weighting scheme.

tf-idf(t) = t£(¢) x idf(¢) (3)

In order to employ this weighting scheme (Eq. 3), we can assign this option within
the already familiar function dtm:

dtm <- DocumentTermMatrix(corpus, control = list(weighting =
weightTfIdf))

The above mentioned steps provide us with a suitable numeric matrix under the
name of dtm. In this matrix, each cell contains an integer, corresponding to a (perhaps
weighted) number of times a specific term appeared in each document within our
corpus. However, most cells in such dtm will be empty, i.e., zeros, because most
terms do not appear in most of the documents. This property is referred to as matrix
sparsity.

Most term-document matrices tend to be high-dimensional and sparse. This is
because any given document will contain only a subset of unique terms that appear
throughout the corpus. This will result in any corresponding document-row having
zeros for terms that were not used in that specific document. Therefore, we need an
approach to reduce dimensionality.

Function RemoveSparseTerms takes our existing dtm, and a certain numerical
value called sparse, and returns an adjusted dtm, where the number of elements is
reduced, depending on the value set for sparse. This numerical value is defined as
the maximum allowed sparsity, as is set in the range of zero to one. In the sense of the
sparse argument to RemoveSparseTerms, sparsity refers to the threshold of relative
document frequency of a term, above which the term will be removed. Sparsity
becomes smaller as this threshold approaches one.



In a way, this process can be thought of as removing outliers. For example, the
code below will yield a dtm where all terms appearing in at least 90% of the documents
will be kept.

dtm <- RemoveSparseTerms(dtm, 0.1)

Now, we have a dtm that is ready for the initial text analysis. An example of output
following this weighting scheme and subsequent sparsity reduction of a certain degree
might yield Table 2.

abroad acceler accompani account achiev  adjust
01-2007 0.0002 0.000416 0.000844  0.000507 0.000271 0.000289
01-2008 0.00042 0.000875 0.000887 0.000152 9.49E-05 0.000304

01-2009 0.000497 0 0 9.01E-05 0.000112 0.000957
01-2010 0.000396 0 0 7.18E-05 8.95E-05 0.000954
01-2011 0.000655 0 0.000691 0.000119 7.39E-05 0.000552
01-2012 0.000133 0 0.001124 9.65E-05 6.01E-05 0
01-2013  0.00019 0.000395 0 0.000138 8.56E-05 0.000274
01-2014 0 0.000414 0 0.000144 8.98E-05 0
01-2015 0 0.00079 0 6.88E-05 8.57E-05 0.000183
01-2016 0 0.000414 0 0 0.00018 0.000192
01-2017 0 0.000372 0.000755 6.48E-05 0.000323 0.000689
01-2018 0.000581 0 0.002455 0.000211 0 0

Table 2: An excerpt of a dtm with tf-idf weighting methodology. The highest values
for the selected sample are highlighted in gray.

4.2 Tidytext Table

Tidytext is an R package, detailed in Wickham (2014). This format class was devel-
oped specifically for the R software, and for the sole purpose of text mining. Tidytext
presents a set of documents as a one-term-per-document-per-row data frame first.
This is done with the help of the tidy function within the tidytext.

A tidytext structured data set has a specific format: each variable is a column,
each observation is a row, and each type of observational unit is a table.

This one-observation-per-row structure is in contrast to the ways text is often
stored in current analyses, perhaps as strings or in a dtm. For tidytext, the ob-
servation that is stored in each row is most often a single word, but can also be an
n-gram, sentence, or paragraph. There is also a way to convert the tidytext format
into the dtm format. We plan to use the tidytext package in one of our extensions
to the current project. Instead of analyzing single words within each document, we
will conduct our analysis on n-grams, or sets of two, three, or more words, or perhaps
sentences.
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The tidytext package is more limited than tm, but in many ways is more intuitive.
The tidytext format represents a table with one word (or expression) per row. As
we will show, this is different from other formats where each word corresponds with
the document from which it comes.

For example, Fig. 1 presents the most frequent words in the corpus as produced
by the tidytext package. The below code takes all of the words that appear in the
corpus at least 1200 times or more and plots their frequencies.

tidy.table <- tidy.table %>%

count (word, sort = TRUE) %>%

filter(n > 1200) %>Y%

mutate (word = reorder(word, n)) %>%

ggplot(aes(word, n)) + geom_col() + x1lab(NULL) + coord_flip()

In this code, n is the word count, i.e., how many times each word appears in the
corpus.

percent-

rate-

inflation-

months-

increased-

growth-

increase-

bank-

month-

israel-

0
2000
4000°
6000

Figure 1: Histogram containing most popular terms within the tidytext table.

Besides being more intuitive, the tidytext package has the capability for better
graphics. An example is provided in Section 4.3.



4.3 Data Exploration

Given a dtm with reduced dimensions, as described above, we can apply exploratory
analysis techniques to find out about what the corpus, or each document within the
corpus, is talking. As with the text cleaning, there are several logical steps, and the
first would be to find out what the most frequent terms within the dtm are.

The following piece of code sums up the columns within the dtm, and then sorts it
in descending order within the data frame called order.frequencies. We can then
view terms with the highest and the lowest frequencies by using functions head and
tail, respectively:

term.frequencies <- colSums(as.matrix(dtm))
order.frequencies <- order(term.frequencies)

Table 3 is an example of an output following these commands, showing the top
six most frequent words and their corresponding frequencies.

Term j
percen | 9927
rate | 9127
increas | 5721
month | 5132
interest | 4861
bank | 4039

Table 3: Top Frequent Words in DTM

Another, and perhaps easier way to identify the frequency terms within the dtm
is to use function findFreqTerms, which is a part of the package tm. This function
returns a list of terms, which meet two ad-hoc criteria of upper and lower bounds of
frequency limits:

findFreqTerms(dtm, lowfreq = 1800, highfreq = 5000)

Here is an example of an output following these commands. Figure 2 shows a
histogram of the terms that appear at least 1800 within our corpus.

Another way to look at the most popular terms is to use the dtm with the tf-idf
frequency weighted terms. Figure 3 shows a histogram of some of the most common
terms within the corpus, as weighted by the tf-idf approach.

Once we know some of the most frequent terms in our corpus, we can explore the
corpus further by looking at different associations between some of them.

12
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This can be done with the function findAssocs, part of the package tm. This
function takes our dtm, a specific term such as “bond”, “increas”, “global”, etc., and
an inclusive lower correlation limit as an input, and returns a vector of matching
terms and their correlations (satisfying the lower correlation limit corlimit):

findAssocs(dtm, "bond", corlimit = 0.5)
findAssocs(dtm, "econom", corlimit = 0.35)
findAssocs(dtm, "fed", corlimit = 0.35)
findAssocs(dtm, "feder", corlimit = 0.35)

Table 4 is an example of an output following these for the term “bond”:

Term j
yield | 0.76
month | 0.62
market | 0.61
credit | 0.60
aviv | 0.58
rate | 0.58
bank | 0.57
indic | 0.57

announc | 0.56
sovereign | 0.55
forecast | 0.55
held | 0.54
measur | 0.54
treasuri | 0.52
germani | 0.52
index | 0.51

Table 4: Terms most correlated with the term bond

While this might not be the best way to explore the content of each text or the
corpus in general, it might provide some interesting insights for future analysis. The
math behind findAssocs is based on the standard function corlimit in R’s Stats
package. Given two numeric vectors, corlimit computes their correlation.

Another exciting way to explore the contents of our corpus is to create a so-called
Wordcloud. A word cloud is an image composed of words used in a particular text or
corpus, in which the size of each word indicates its frequency. This can be done with
the use of the wordcloud package.® Below, we plot word clouds using two different
approaches to calculating the frequency of each term in the corpus. The first approach
uses a simple frequency calculation.

https://cran.r-project.org/web /packages/wordcloud /wordcloud.pdf

14



set.seed(142)

wordcloud(names(freq), freq, min.freq
"Dark2"))

wordcloud(names (freq), freq, min.freq
"Dark2"))

wordcloud (names (freq), freq, min.freq
"Dark2"))

wordcloud(names(freq), freq, min.freq
"Dark2"))

400, colors=brewer.pal(8,

700, colors=brewer.pal(8,

1000, colors=brewer.pal(8,

2000, colors=brewer.pal(8,

The function wordcloud provides a nice and intuitive visualization of the content
of the corpus, or if needed, of each document separately. Fig. 4 to Fig. 6 are several
examples of an output following these commands. For instance, Fig. 4 and Fig. 6
show word clouds containing word terms that appear at least 400 and 2000 times in
the corpus, respectively.
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Figure 4: Wordcloud containing terms that appear at least 400 times in the corpus.
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Figure 5: Wordcloud containing terms that appear at least 700 times in the corpus.

Another way to demonstrate the frequency of terms within the corpus is to use
the tf-idf weighting scheme, and produce similar figures. It is clear that with the
new weighting scheme, other terms are emphasized more. As an example, Fig. 7 and
Fig. 8 show word clouds with word frequencies above 0.06, 0.08 and 0.1.
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Figure 6: Wordcloud containing terms that appear at least 1000 and 2000 times in
the corpus (left and right panel, respectively).
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Figure 7: Word cloud containing word terms with word frequencies above 0.06.
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18



Another way to explore the corpus content is to apply a clustering algorithm
to visualize it with a type of dendrogram or adjacency diagram. The clustering
method can be thought of as an automatic text categorization. The basic idea behind
document or text clustering is to categorize documents into groups based on likeness.
One of the possible algorithms would be to calculate the Euclidean, or geometric,
distance between the terms. Terms are then grouped on some distance related criteria.

One of the most intuitive things we can build is correlation maps. Correlation
maps show how some of the most frequent terms relate to each other in the corpus,
based on some ad-hoc correlation criteria. Below is the code example that can create
a correlation map for a given dtm. To plot this object, one will need to use the
Rgraphviz package.’

correlation.limit <- 0.6

fregency.terms.dtm <- findFreqTerms(dtm.tf.idf)
plot(dtm.tf.idf, term = freqency.terms.dtm,
corThreshold=correlation.limit)

We plot Fig. 9 and Fig. 10 following the above code.

Figure 9: Correlation map using dtm with simple counting weighting scheme.

9 Available here: http://bioconductor.org/biocLite.R
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project

Figure 10: Correlation map using dtm w. tf-idf frequency.

Another way to visualize relationships between terms within the corpus is to create
a dendrogram for each of our dtm using the following commands:

dendogram <- dist(t(dtm.sparse.01), method = "euclidian")
dendogram.fit <- hclust(d = dendogram, method = "ward.D")
plot(dendogram.fit, hang = -1)

This cluster analysis map is based on the Ward’s method, which is based on the
original function approach. It relies on choosing a minimum variance criterion that
would minimize the total within-cluster variance.!’

The following dendograms, Fig. 11 and Fig. 12, are built based on these relation-
ships:

10See: Ward, J. H., Jr. (1963), "Hierarchical Grouping to Optimize an Objective Function",
Journal of the American Statistical Association, 58, 236a€“244.
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Figure 12 shows a dendogram based on the dtm weighted using tf-idf scheme.

Another quick and useful visualization of each document’s content is allowed by
heat maps. Heat maps can be used to compare the content of each document, side
by side, with other documents in the corpus, revealing interesting patterns and time
trends.

Fig. 13 presents word frequencies for the word list on the bottom of the heatmap.
It demonstrates a simple distribution of word frequencies throughout time. For ex-
ample, the term accommod was used heavily during the discussions that took place in
mid and late 2001; however, it was not mentioned at all in early 2002.

Color Key
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0 0.004
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2002-01-28
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2002-03-25
2001-09-24
2001-08-27

2002-04-22

Figure 13: Heatmap for documents published in 2010 (tf-idf weighted dtm). The
color key corresponds to probabilities for each topic being discussed during the cor-
responding interest rate decision meeting.

Fig. 14 presents a heatmap of word frequencies for the period spanning the mid-
1999 to early 2000. For example, the term inflat, representing discussion around
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inflation, shows that this topic was discussed heavily in early 2000, in particular in
January of 2000. These kinds of figures provide a quick and visual representation of
any given interest rate discussion.

Color Key

.

0 5 10

Value

1999-07-25
1999-10-25
1999-09-27
1999-06-28
1999-12-27
1999-11-22
1999-08-23
1998-08-06
2000-01-24
2000-02-21
2000-03-27

2000-04-24

Figure 14: Heatmap for documents published in 1999 (tf weighted dtm). The color
key corresponds to probabilities for each topic being discussed during the correspond-
ing interest rate decision meeting.

This section sums up some of the most popular techniques for exploratory text

analysis. We show different ways a set of texts can be summarized and visualized
easily and intuitively.
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5 Text Analytics

The subsequent steps of our analysis can be roughly divided by purpose, analysis
within texts and analysis between texts. Techniques such as dictionary and applying
various weighting schemes to existing terms can be used for the first purpose. The
second group is used for comparison between texts and refers to techniques related
to Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). We use a
specific dictionary methodology for the first goal and a wordscores algorithm, which
is an LDA methodology, for the second goal. We describe these techniques in more
detail in this section. The majority of text analytic algorithms in R are written with
the dtm format in mind. For this reason, we will use dtm format in order to discuss
the application of these algorithms.

5.1 Word Counting

Dictionary-based text analysis is a popular technique due to its simplicity. Dictionary-
based text analysis begins with setting a predefined list of words that are relevant for
the analysis of that particular text. For example, the most commonly used source for
word classifications in the literature is the Harvard Psycho-sociological Dictionary,
specifically, the Harvard-IV-4 TagNeg (H4N) file.

However, word categorization for one discipline (for example, psychology) might
not translate effectively into another discipline (for example, economics or finance).
Therefore, one of the drawbacks of this approach is the importance of adequately
choosing an appropriate dictionary or a set of predefined words. Loughran and Mec-
donald (2011) demonstrate that some words that may have a negative connotation in
one context may be neutral in others. The authors show that dictionaries containing
words like tax, cost, or liability that convey negative sentiment in a general context,
are more neutral in tone in the context of financial markets. The authors construct
an alternative, finance-specific dictionary to reflect tone in a financial text better.
They show that, with the use of a finance-specific dictionary, they can predict asset
returns better than other, generic, dictionaries. We use the Loughran and Mcdonald
(2011) master dictionary, which is available on their website. We divide the dictio-
nary into two separate csv files into two sentiment categories. Each file contains one
column with several thousand words; one is a list of positive terms, and one is a list
of negative terms. We read in both of these files into R as csv files.

dictionary.finance.negative <- read.csv('"negative.csv",
stringsAsFactors = FALSE) [,1]
dictionary.finance.positive <- read.csv("positive.csv",
stringsAsFactors = FALSE) [,1]

For example, a word is a positive term if it belongs to a positive, or "hawkish"
category: for example, “increas”, “rais”, “tight”, “pressur”, “strength”, etc. A word
is a negative term if it belongs to a negative or "dovish" category: for example,
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“decreas”, “lower”, “loos”, “unsatisfi’, “worse”, etc. A document is classified as
positive if the count of positive words is greater than or equal to the count of negative
words. Similarly, a document is classified as negative if the count of negative words
is greater than the count of positive words. The constructed indicator is presented
in Fig. 16. We transform both files into two separate data frames, using function
data.frame. This function is used for storing data tables in a matrix form. We apply
the same text cleaning manipulation to the dictionary words as applied to the corpus
texts themselves. The code below applies the text data cleaning principles to the
two sentiment dictionaries that we have uploaded. The cleaning involves turning all
terms within both dictionaries to lowercase, stemming all of the terms, and dropping
all duplicate terms:

dictionary.negative <- tolower(dictionary.negative)
dictionary.negative <- stemDocument(dictionary.negative)
dictionary.negative <- unique(dictionary.negative)

We then use the match function that compares the terms in both dictionaries with
each term in the corpus. This function returns a value of one if there is a match,
and a value of zero if there is no match. This allows us to calculate the number of
times each positive and each negative term appeared in the corpus. We proceed to
calculate the relative frequency of each dictionary terms. The code below captures
the list of terms from the dtm by using the function colnames and then matches each
of the terms in the corpus with the terms in each of the dictionaries, calculating the
total amount of matches for each dictionary:

corpus.terms = colnames(dtm)
positive.matches = match(corpus.terms, dictionary.positive, nomatch=0)
negative.matches = match(corpus.terms, dictionary.negative, nomatch=0)

We then assign a value of one to each positive term (P) in the document, and a
value of minus one to each negative term (N) in a document, and measure the overall
sentiment score for each document i by the following formula:

P, — N;
P+ N;

A document is classified as positive if the count of positive words is greater than
or equal to the count of negative words. Similarly, a document is negative if the

count of negative words is greater than the count of positive words. The code below
demonstrates a simple calculation of this indicator:

Score; = €[-1;1] (4)

document.score = sum(positive.matches) - sum(negative.matches)
scores.data.frame = data.frame(scores = document.score)

Fig. 15 presents the main indicators constructed using the dictionary word count.

25



0,009~

0,006~

Sentiment Score

0.003-

0.000-

2000 2005 2610 2015
Date
0015
0010
2
g
3
§
£
5
@
0.005-
0.000-
2000 2005 2610 2015
Date
00125~
0.0100-
0.0075-
2
g
3
§
£
5
@
0.0050-
0.0025-
0.0000- - . . .
2000 2005 2010 2015
Date

Figure 15: Scaled count of positive (top panel), negative (middle panel), and uncer-
tainty (bottom panel) words in each document using the dictionary approach.

26



Using the positive and negative sentiment indicators exposed in Fig. 15, Fig. 16
shows the simple dictionary based sentiment indicator.

Sentiment

001~

2000 2005 2010 2015
Date

Figure 16: Sentiment indicator built using the dictionary approach.

Fig. 17 demonstrates a distribution of positive and negative matches throughout
the corpus, as produced by the package tidytext.

constraining negative
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Figure 17: How much each term contributes to the sentiment in each corresponding
category. These categories are defined as mutually exclusive. Constraining (top left),
positive (top right), negative (bottom left), and uncertainty (bottom right) sentiments
are represented.
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To sum it up, this is a “quick and dirty” way to summarize the sentiment of any
given document. The strength of this approach is that it is intuitive, and easy to
implement. In addition, any given dictionary that is being used for document scoring
can be customized with ad-hoc words, related to the subject matter. This, however,
opens the door to a potential weakness of this approach. There is a point where
a customized dictionary list might lose its objectivity. Dictionary based sentiment
measurement is the first step in the sentiment extraction process.

5.2 Relative Frequency

An algorithm called wordscores estimates policy positions by comparing sets of
texts using the underlying relative frequency of words. This approach, described
by Laver et al. (2003), proposes an alternative way to locate the policy positions
of political actors by analyzing the texts they generate. Mainly used in political
sciences, it is a statistical technique for estimating the policy position based on word
frequencies. The underlying idea is that relative word usage within documents should
reveal information of policy positions.

The algorithm assigns policy positions (or "scores") to documents on the basis
of word counts and known document scores (reference texts) via the computation of
"word scores". One assumption is that their corpus can be divided into two sets (Laver
et al., 2003). The first set of documents has a political position that can be either
estimated with confidence from independent sources or assumed uncontroversial. This
set of documents is referred to as the “reference” texts. The second set of documents
consists of texts with unknown policy positions. These are referred to as the “virgin”
texts. The only thing known about the virgin texts is the words in them, which are
then compared to the words observed in reference texts with known policy positions.

One example of a reference text describes the interest rate discussion meeting that
took place on November 11th, 2008. We chose this text as a reference because it is
a classic representation of dovish rhetoric. The excerpt below mentions a negative
economic outlook, both in Israel and globally, and talks about the impact of this
global slowdown on real activity in Israel:

Recently assessments have firmed that the reduction in global growth
will be more severe than originally expected. Thus, the IMF
significantly reduced its growth forecasts for 2009: it cut its
global growth forecast by 0.8 percentage points to 2.2 percent, and
its forecast of the increase in world trade by 2 percentage points, to
2.1 percent. These updates are in line with downward revisions by
other official and private-sector entities. The increased severity of
the global slowdown is expected to influence real activity in Israel.
The process of cuts in interest rates by central banks has intensified
since the previous interest rate decision on 27 October 2008.

Another example of the reference text describes the interest rate discussion meet-
ing that took place on June 24th, 2002. This text is a classic representation of hawkish
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rhetorics. For example, the excerpt below mentions sharp increase in inflation and
inflation expectations:

The interest-rate hike was made necessary because, due to the rise in
actual inflation since the beginning of the year and the depreciation
of the NIS, inflation expectations for the next few years as derived
from the capital market, private forecasters, and the Bank of Israel’s
models have also risen beyond the 3 percent rate which constitutes the
upper limit of the range defined as price stability. Despite the two
increases in the Bank of Israel’s interest rate in June, inflation
expectations for one year ahead have risen recently and reached 5
percent.

Specifically, the authors use relative frequencies observed for each of the different
words in each of the reference texts to calculate the probability that we are reading
a particular reference text, given that we are reading a particular word. This makes
it possible to generate a score of the expected policy position of any text, given only
the single word in question.

Scoring words in this way replaces and improves upon the predefined dictionary
approach. It gives words policy scores, without having to determine or consider their
meanings in advance. Instead, policy positions can be estimated by treating words
as data associated with a set of reference texts.!!

In our analysis, out of the sample containing 224 interest rate statements, we pick
two reference texts that have a pronounced negative (or “dovish”) position and two
reference texts that have a pronounced positive (or “hawkish”) position regarding the
state of the economy during the corresponding month. We assign the score of minus
one to the two “dovish” reference texts and the score of one to the two “hawkish”
reference texts. We use these known scores to infer the score of the virgin, or out of
sample, texts. Terms contained by the out of sample texts are compared with the
words observed in reference texts, and then each out of sample text is assigned a
score, Wordscore;.

In R, we utilize the package quanteda, which contains the function wordfish.
This function takes a predefined corpus and applies the wordscores algorithm as
described above. Once the selection process of the reference documents is complete,
the code is fairly simple.

wordscore.estimation.results <- wordfish(corpus, dir = c(1,5))

This function takes our corpus as an input, as well as the two selected reference
documents (here, document number one and document number five), and returns a
set of estimation position, as related to each document.

'However, one must consider the possibility that there would be a change in rhetoric over time.
Perhaps it would make sense to re-examine the approach at certain points in time. This would
depend on the time span of the data.
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5.3 Topic Models

Topic modeling describes a method for classifying and then mapping a collection of
documents into a given number of topics, that best represents information given.
Largely, topic modeling is a set of algorithms that automatically find and classify
recurring patterns of words throughout a set of documents. In this paper, we use the
LDA algorithm for the above task, which is a widely used algorithm in the field of
computer science (Blei et al., 2003).

This algorithm assumes that each of the documents within our corpus consists of
a mixture of corpus-wide topics. These topics, however, are not observable but are
instead hidden behind everyday words and sentences. Specifically, LDA estimates
what fraction of each document in a corpus can be assigned to each of the topics.
The number of topics is set in advance. We do not observe the topics in the document,
only the words that those topics tend to generate. LDA is an algorithm that employs
an unsupervised learning approach, in that we do not set prior probabilities for any
of the words belonging to any given topic. Besides, it is a mixed-membership model,
and therefore the assumption is that every word in the corpus simultaneously belongs
to several topics and the topic distributions vary over documents in the corpus.

To provide more intuition, consider an implicit assumption that a given set of
words relates to a specific topic. For example, consider the following set of words:
gain, employment, labor. Each of these words would map into an underlying topic
“labor market” with a higher probability compared to what it would map into the
topic of “economic growth”. This algorithm has a considerable advantage, its ob-
jectivity. It makes it possible to find the best association between words and the
underlying topics without a pre-set word lists or labels. The LDA algorithm works
its way up through the corpus. It first associates each word in the vocabulary to
any given latent topic. It allows each word to have associations with multiple topics.
Given these associations, it then proceeds to associate each document with topics.
The main input, besides the actual corpus, that the model receives is how many top-
ics there should be. Given those, the model will generate 3, topic distributions, the
distribution over words for each topic. The model will also generate #; document dis-
tributions for each topic, where d is the number of documents. This modeling is done
with the use of Gibbs sampling iterations, going over each term in each document
and assigning relative importance to each instance of the term.

In R, we use the package topicmodels, with the default parameter values supplied
by the LDA function. Specifying a parameter is required before running the algorithm
which increases the subjectivity level. This parameter, k, is the number of topics that
the algorithm should use to classify a given set of documents. There are analytical
approaches to decide on the values of k, but most of the literature set it on an ad hoc
basis. When choosing k& we have two goals that are in direct conflict with each other.
We want to predict the text well, to be as specific as possible in terms of determining
the number of topics. Yet, at the same time, we want to be able to interpret our
results, and when we get too specific, the general meaning of each topic will be lost.
Hence, the trade-off.

Let us demonstrate with this example by first setting £k = 2, meaning that we
assume only two topics to be present throughout our interest rate discussions. Below
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are the top seven words to be associated with these two topics.

It can be seen below that while these two sets of words differ, they both have
overlapping terms. This demonstrates the idea that each word can be assigned to
multiple topics, but with a different probability.

Topic 1 | Topic 2
"increas" "rate"
"rate" | "interest"
"month" | "expect"
"continu" "israel"
"declin" "inflat"
"discuss" "bank"
"market" | "month"
"monetari" | "quarter"

Table 5: Words with the highest probability of appearing in Topic 1 and Topic 2.

Table 5 shows that Topic 1 relates directly and clearly to changes in the target
rate, while Topic 2 relates more to inflationary expectations. However, these are not
the only two things that the policymakers discuss during interest rate meetings, and
we can safely assume that there should be more topics considered, meaning &k should
be larger than two.!?

To demonstrate the opposite side of the trade off, let us consider k£ = 6, i.e., we
assume six different topics are being discussed. Below is the top seven words with
the highest probability to be associated with these six topics:

Topic 1 Topic 2 | Topic 3| Topic 4 | Topic 5| Topic 6
"declin" "bank" | "increas" | "continu" | "quarter" | "interest"
"monetari" | "economi" | "month" "rate" "year" "rate"
"discuss" "month" | "interest" | "remain" "rate" "israel"
"rate" | "forecast" "inflat" | "market" | "growth" "inflat"
"data" | "market" "hous" "term" | "month" | "expect"
"polici" "govern" | "continu" "year" | "expect" | "discuss"
"indic" "global" "rate" "price" "first" "bank"
"develop" "activ" "indic" | "growth" "point" | "econom"

Table 6: Words with the highest probability of appearing in Topics 1 through 6.

The division between topics is less clear in Table 6 compared to Table 5. While
Topics 1, 2 and 3 relate to potential changes in interest rate, Topic 4 relates to housing
market conditions, and Topic 5 relates to a higher level of expected growth taking
into account monetary policy considerations. Topic 6 covers economic growth and
banking discussions.

12We are currently working on the supervised approach that will help us determine the main
theme of each topic objectively.
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We see that while we get more granularity in topics by increasing the possible
number of topics, we see increased redundancy in the number of topics. Given this
outcome, we could continue to adjust k£ and assess the result.

We demonstrate how we run this algorithm. First, we specify a set of parameters
for Gibbs sampling. These include burnin, iter, thin, which are the parameters
related to the amount of Gibbs sampling draws, and the way these are drawn.

burnin <- 4000

iter <- 2000

thin <- 500

seed <- 1list (2003, 5, 63, 100001, 765)
nstart <- 5

best <- TRUE

As discussed, the number of topics is decided on arbitrarily, as an educated guess,
and can be adjusted as needed. Here, based on the previous analysis we take the
average of the two previous assumptions and end up with four assumed topics.

k<-4

The code below runs the LDA algorithm, using the set of parameters as described
above and our dtm:

lda.results <- LDA(dtm.sparse, k, method = "Gibbs", control =
list(nstart = nstart, seed = seed, best = best, burnin = burnin, iter
= iter, thin = thin))

These last lines write out and save the estimated topics as provided by the LDA
algorithm:

lda.topics <- as.matrix(topics(lda.results))
lda.results.terms <- as.matrix(terms(lda.results,8))
lda.results.terms
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Topic 1 | Topic 2 | Topic 3 Topic 4
"expect" | "increas" | "interest" "month"
"continu" "declin" "rate" "increas"
"rate" | "continu" "stabil" "rate"
"inflat" "rate" "israel" | "forecast"
"interest" | "expect" "bank" "bank"
"rang" | "remain" "inflat" "indic"
"israel" | "growth" | "market" "growth"
Hlastﬂ Htermll "gOVeI‘n" Hyear"
"price" "nis" "year" | "previous"
"bank" "year" "target" "index"
"econom" "data" "term" "hous"

Table 7: Words with the highest probability of appearing in Topics 1 through 4.

Let us examine the topics presented in Table 7. Topic 1 relates to current changes
in interest rate and its goal of keeping inflation in range. It mentions the interest
rate, inflation expectations and the range of inflation. Topic 2 relates to the actual
inflation data and inflationary expectations. Topic 3 relates to a high-level monetary
policy discussion, and Topic 4 relates to housing market conditions.

LDA algorithm generates probability distribution of topics over corpus.

Fig. 18 is a heat map containing a sample for the period of June 2007 to April
2008. Given an assumption that only four topics are discussed during each interest
rate meeting, the values presented in the legend are probabilities for each topic being
discussed during the corresponding interest rate decision meeting.

For example, during the meeting of November 2008, the "Monetary Policy" topic
was discussed with greater probability compared to the "Inflation" topic. As can be
seen from Fig. 18, this occurrence stands out from the regular pattern.
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Figure 18: Probability distribution of Topics 1 through 4 over a set of documents
from 2007 and 2008. The color key corresponds to probabilities for each topic being
discussed during the corresponding interest rate decision meeting.
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Fig. 19 and Fig. 20 present the heat maps about the interest rate announcements
during the year 2007 and 2000, respectively.
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Figure 19: Probability distribution of Topics 1 through 4 over a set of documents
from 2008 and 2009. The color key corresponds to probabilities for each topic being
discussed during the corresponding interest rate decision meeting.

Figure Fig. 19 shows that in a given set of documents, the bulk of the discussion
was spent on discussing the key interest rate set by the Bank of Israel. In contrast,
it can be seen that inflation was not discussed at all during certain periods.

Figure Fig. 20 shows that the subject of discussion was mainly monetary policy
during this period of time.
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Figure 20: Probability distribution of Topics 1 through 4 over a set of documents
from 1999 and 2000. The color key corresponds to probabilities for each topic being
discussed during the corresponding interest rate decision meeting.
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6 Conclusion

In this paper, we review some of the primary text mining methodologies. We demon-
strate how sentiments and text topics can be extracted from a set of text sources.
Taking advantage of the open source software package R, we provide a detailed step
by step tutorial, including code excerpts that are easy to implement, and examples
of output. The framework we demonstrate in this paper shows how to process and
utilize text data in an objective and automated way.

As described, the ultimate goal of text analysis is to uncover the information
hidden in monetary policymaking and its communication and to be able to organize
it consistently. We first show how to set up a directory and input a set of relevant files
into R. We show how to store this set of files as a corpus, an internal R framework
that allows for easy text manipulations. We then describe a series of text cleaning
manipulations that sets the stage for further text analysis. In the second part of
the paper, we demonstrate approaches to preliminary text analysis and show how
to create several summary statistics for our existing corpus. We then proceed to
describe two different approaches to text sentiment extraction, and one approach to
topic modeling.

We also consider term-weighting and contiguous sequence of words (n-grams) to
capture the subtlety of central bank communication better. We consider field-specific
weighted lexicon, consisting of two, three, or four-word clusters, relating to a specific
policy term being discussed. We believe these n-grams, or sets of words, will provide
an even more precise picture of the text content, as opposed to individual terms, and
allow us to find underlying patterns and linkages within text more precisely.
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